
DSP HDL Toolbox™
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

DSP HDL Toolbox™ User's Guide
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)
September 2022 Online only Revised for Version 1.1 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Featured Examples
1

Align Parallel Data Streams . 1-2

HDL Implementation of LMS Filter . 1-8

High Performance DC Blocker for FPGA . 1-21

HDL Implementation of Four Channel Synthesizer and Channelizer . . . 1-30

Gigasamples-per-Second Correlator and Peak Detector 1-38

NFC Digital Downconverter . 1-46

Implement Digital Downconverter for FPGA . 1-61

Implement Digital Upconverter for FPGA . 1-79

HDL Optimized System Design
2

FIR Filter Architectures for FPGAs and ASICs . 2-2
Complex Multipliers . 2-3
Frame-Based Input Data . 2-5
Fully Parallel Systolic Architecture . 2-6
Fully Parallel Transposed Architecture . 2-6
Partly Serial Systolic Architecture (1 < N < L) . 2-7
Fully Serial Systolic Architecture (N ≥ L) . 2-8

High-Throughput HDL Algorithms . 2-9
Blocks that Support Frame-Based Input . 2-9

Hardware Control Signals . 2-12
Streaming Interface with Valid Signal . 2-12
Backpressure Signal . 2-12
Reset Signal . 2-13

iii

Contents

Block Reference Page Examples
3

Generate Sine Wave . 3-2

Fully Parallel Systolic FIR Filter Implementation 3-5

Partly Serial Systolic FIR Filter Implementation . 3-9

Optimize Programmable FIR Filter Resources . 3-13

FIR Decimation for FPGA . 3-18

Implement atan2 Function for HDL . 3-20

Downsample a Signal . 3-23

Control Data Rate Using Ready Signal . 3-26

Automatic Delay Matching for the Latency of FFT Block 3-29

Implement CIC Interpolator Filter for HDL . 3-31

Implement CIC Decimator Filter for HDL . 3-34

Implement Downsampler For HDL . 3-37

Implement Upsampler for HDL . 3-39

HDL Code Generation and Deployment
4

Prototype DSP HDL Algorithms on Hardware . 4-2
How to Install Support Packages . 4-2

Radar Application Examples
5

FPGA-Based Beamforming in Simulink: Algorithm Design 5-2

FPGA-Based Beamforming in Simulink: Code Generation 5-9

FPGA-Based Monopulse Technique: Algorithm Design 5-16

FPGA-Based Monopulse Technique: Code Generation 5-27

iv Contents

FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code
Generation . 5-36

v

Featured Examples

• “Align Parallel Data Streams” on page 1-2
• “HDL Implementation of LMS Filter” on page 1-8
• “High Performance DC Blocker for FPGA” on page 1-21
• “HDL Implementation of Four Channel Synthesizer and Channelizer” on page 1-30
• “Gigasamples-per-Second Correlator and Peak Detector” on page 1-38
• “NFC Digital Downconverter” on page 1-46
• “Implement Digital Downconverter for FPGA” on page 1-61
• “Implement Digital Upconverter for FPGA” on page 1-79

1

Align Parallel Data Streams

This example shows how to align two commonly sourced data streams with different upstream
operation latencies using FIFO-based buffering.

In this example we use the SampleAligner to align two data streams relative to their valid signals.
The SampleAligner subsystem uses FIFOs with synchronized read operations. This implementation
works only if the input streams have the same number of valid samples in a time period.

The model generates a random Barker-encoded BPSK input data stream that simulates data from a
transmitter. The implemented Barker decoder requires computing the cross-correlation and signal
power, and then using those two signals to decode the transmitted samples. Two parallel subsystems
perform cross-correlation and measure the signal power. These operations have different latencies, so
to recombine the two data streams, they must be re-aligned. The cross-correlation and power
measurement operations also do not change the rate or duty cycle of the shared input stream, so they
are suitable for a FIFO implementation.

Stream Analyzer

To align the data streams the required buffer depth must be determined and the duty cycle of the
data streams be verified as being equal. This is achieved using the StreamAnalyzer which accepts the
valid signals of two data streams and determines these required parameters.

1 Featured Examples

1-2

• The minBufferDepth output determines the minimum number of samples that must be buffered
to synchronize the data streams. This value is determined by taking the maximum modulus value
of a counter which is incremented on a valid from stream A and decremented on a valid from
stream B.

• The dutyCycleA and dutyCycleB outputs provide the number of valid samples per second. This
calculation starts counting valid samples when it receives the first valid sample on each input
stream. The StreamAnalyzer's block sample time is used as the signal period when determining
the dutyCycle. The duty cycle of both data streams must match to ensure that the internal buffer
of the SampleAligner do not overflow. The length of the simulation affects the results of each
channel's duty cycle. Longer simulations give more accurate representations of the duty cycles.

The StreamAnalyzer is for use in simulation only and does not support HDL code generation.

Sample Aligner

The SampleAligner masked subsystem aligns the samples of two data streams based on their
respective valid signals. The subsystem buffers incoming data from either stream until there is at
least one valid sample stored from both streams, and then reads both buffers to return a sample for
each data stream. The SampleAligner requires that the valid duty cycle of the input data streams
match to prevent internal buffer overflows.

 Align Parallel Data Streams

1-3

The buffer depth parameter sets the internal sample buffer depths. This parameter can be
determined from analysis of the latencies for each data stream or from the use of the StreamAnalyzer.
The implemented buffer depth is equal to 2^nextpow2(bufferDepth + 5). The extra 5 samples
accounts for internal control logic latency when operating with continuous valid data streams.

The SampleAligner can be configured to provide an overflow indicator output port which will return a
true Boolean value if either of the buffers experience an overflow. In the event of an overflow, no new
data is written to the full buffer. This condition leads to loss of data integrity after the buffered
samples have been output.

The SampleAligner architecture supports high clock rate applications with its frequency limit
imposed by the inferred RAM type. This pipelining means the SampleAligner has a write-to-read
latency of 7 clock cycles and a 4 clock cycle latency for the output of an overflow indicator. The input
data types for each separate stream does not have to match. Both input streams must be scalar
values.

The SampleAligner Controller consists of three parallel operations which handle write and read
operations. Pseudo code for these operations are shown below, with more in-depth state diagrams
found at the end of example.

if (valid_A)
 if (BufferNotFull_A)
 write_A();
 else
 overflow();
 end
end

1 Featured Examples

1-4

if (valid_B)
 if (BufferNotFull_B)
 write_B();
 else
 overflow();
 end
end

if (BufferNotEmpty_A) && (BufferNotEmpty_B)
 read();
end

Considerations for Stream Aligning

Performing alignment of parallel data streams is highly specific to the intended use case. The
processing applied to both streams prior to the desired alignment stage as well as the downstream
processing must be considered to define the alignment constraints. An equal valid duty cycle across
both data streams allows for simple FIFO-based buffering. A difference in the valid duty cycles needs
to be carefully handled based on the specific use case and may not be possible. Any rate changes
across the data streams and the impact of filter architectures on the valid signal must be accounted
for. Two data streams can have an equal duty cycle yet different pacing. One could be regular and the
other could be a dense bursty stream of data. Bursty data would require a deeper buffer to ensure
proper alignment. The present control signals must also be considered, with the introduction of start
and end signals imposing additional alignment requirements, deeper buffers, and extended control
logic.

Simulation Results

The resulting simulation waveforms can be observed using the Logic Analyzer and show the
SampleAligner ensure that both data streams are synchronously output.

HDL Implementation Results

The generated HDL code for the SampleAligner subsystem was synthesized for a Xilinx™ Zynq-7000
ZC706 board and met timing constraints of 649 MHz. The required resources are shown in the table.

 Align Parallel Data Streams

1-5

T =

 3x2 table

 Resource Usage
 _________ _____

 LUT 39
 LUTRAM 8
 Flip Flop 99

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product. To generate the HDL code, use this command.

makehdl('SampleAlignment/StreamAligner')

In addition to the HDL generated for this example, the SampleAligner met timing constraints on a
Xilinx™ Zynq-7000 ZC706 of 649 MHz and 457 MHz for buffer depths which inferred DRAM and
BRAM respectively when operating with two 16-bit data streams. The inferred RAM type is
dependent on the implemented buffer size. The SampleAligner controller can see its pipelining
reduced or removed to reduce the write-to-read latency if operating at lower frequencies.

Sample Aligner Controller Architecture

The following state diagrams provide a more in-depth description of the SampleAligner's controller
operation.

1 Featured Examples

1-6

See Also

See Also

More About
• “Hardware Control Signals” on page 2-12

 Align Parallel Data Streams

1-7

HDL Implementation of LMS Filter

This example shows how to implement a fully serial and transpose delayed least mean square (LMS)
adaptive filters. The fully serial LMS filter uses standard LMS adaptive filter algorithm and the
transpose delayed LMS filter uses delayed LMS filter algorithm with a transpose filter architecture.
You can use the fully serial LMS filter for low data-rate applications, such as audio and speech, and
the transpose delayed LMS filter for high throughput applications in wireless communication. The
Simulink® model in this example is optimized for HDL code generation and hardware
implementation.

The fully serial and transpose delayed LMS filters minimize the error between a desired signal and an
observed signal by adjusting the filter weights using mean square error (MSE) criteria. The example
model accepts observed, desired, and step-size signals as input and computes the filtered signal, filter
error, and filter weights or coefficients. You can use LMS filters for system identification, inverse
system identification, noise cancelation, and prediction.

Fully Serial LMS Filter

The block diagram in this section explains the implementation of a fully serial finite impulse response
(FIR) filter architecture along with the LMS algorithm filter weights. In this block diagram, the
buffered input samples select the data for each tap serially and multiplies with the corresponding
coefficients. This architecture reduces the hardware resource utilization, which generates less
number of multipliers with additional logic elements such as multiplexers and registers, when
compared to fully parallel implementation of LMS filter. Implementation of this architecture requires
a clock rate that is faster than the input sample, which depends on the filter length and the number of
delays in the feedback path. For example, for a filter length of 16, the block accepts valid input
samples for every 35 clock cycles, which is the filter length plus 19 clock cycles.

This section explains the LMS equations corresponding to this architecture. The observed signal
is passed as an input to the filter and buffered for every filter length of samples. This buffered data

 is multiplied serially with the corresponding filter coefficients and accumulated in a
register to get the filtered output at timestep .

To get the filter error output at timestep , subtract the filtered output from the desired signal
.

To update the LMS filter weights for the next timestep , LMS uses the filter error and
step size ().

This architecture diagram consists of the fully serial FIR part, and the LMS update part,
and . The left-side of the diagram shows the fully serial FIR part, and the right-side of the
diagram shows the LMS filter weight update part. The input and coefficient memories are used to
buffer the observed data and store the filter coefficients.

1 Featured Examples

1-8

Model Architecture

Open the example model by entering this command at the MATLAB® command prompt.

modelname = 'HDLFullySerialLMSModel';
open_system(modelname);

The HDL LMS Algorithm subsystem has Data Control, Filter, and Coefficient Update blocks. The
Data Control block generates control signals to control the flow of data. The ready signal indicates
when to provide the next valid data. The Filter block implements the serial FIR filter and writes the
observed input samples to the RAM. The control logic reads the buffered data serially in such a way

 HDL Implementation of LMS Filter

1-9

that these samples get multiplied with their corresponding filter weights and that the output product
is added serially to a register for every filter length of samples to get the filtered output. The Filter
block stores the LMS filter weight updates in the RAM and resets the block using a separate reset
control logic (when required). The Coefficient Update block implements and of the LMS
filter. This example starts with a set of zeros as initial values for the estimates of the filter weights.

open_system([modelname '/HDL LMS Algorithm'],'force')

Transpose Delayed LMS Filter

This section explains the equations corresponding to the delayed LMS algorithm. These equations are
approximations to the standard LMS algorithm. The transpose delayed LMS filter uses these
equations with transpose filter structure to fit the hardware characteristics. The observed signal
is passed as an input to the filter. The number of delays (D) in the feedback path are independent of
filter length because the filter part is implemented using a transposed filter architecture, which
improves the throughput by minimizing the pipelined delays in the feedback path of LMS filter.

The filtered output at timestep is given by the equation.

To get the filter error output at timestep , subtract the filtered output from the desired signal
.

To update the filter weights for the next timestep , LMS filter uses the filter error and
step size ().

This architecture diagram shows the transpose delayed LMS filter.

1 Featured Examples

1-10

Model Architecture

Open the example model by entering this command at the MATLAB® command prompt.

modelname = 'HDLDelayedLMSModel';
open_system(modelname);

The HDL LMS Algorithm subsystem has Transpose Filter, Tapped Delay, and Coefficient Update
blocks. The Transpose filter implements the transpose filter structure and outputs . The Tapped
delay block buffers the input data . The Coefficient Update block implements and of
the LMS filter. This example starts with a set of zeros as initial values for the estimates of the filter
weights.

open_system([modelname '/HDL LMS Algorithm'],'force')

 HDL Implementation of LMS Filter

1-11

Port and Parameter Descriptions

This section explains the port and parameter descriptions for the HDLFullySerialLMSModel.slx
and HDLDelayLMSFilterModel.slx models. The input observedSignal and desiredSignal signals
must be scalars and of the same data type. To support HDL code generation, inputs must be scalar
fixed-point data types.

Input Ports

• observedSignal — Input observed signal to the LMS filter, specified as a real- or complex-
valued scalar. The block supports double, single, and signed fixed-point data types.

• desiredSignal — Input desired signal to the LMS filter, specified as a real- or complex-
valued scalar. The block supports double, single, and signed fixed-point data types.

• stepSize — Input step size to the block, specified as double, single, or unsigned fixed-point
data types. This value determines the convergence rate and stability of the filter and must be less
than 1/(power of input signal x filter length) for filter stability. For more information, see [1].

• reset — Input reset signal, specified as a Boolean scalar. When reset is true, the block stops the
current calculation and clears the internal states.

• valid — Input valid signal, specified as a Boolean scalar to validate the input data.

1 Featured Examples

1-12

• adapt — Input adapt signal, specified as a Boolean scalar. When this signal is 1 (high), the LMS
filter updates its filter weights. When this signal is 0 (low), the filter weights remain the same as
what they were previously. This signal is sampled only when the valid signal is 1 (high).

Output Ports

• fiteredOut — Filtered output , returned as a scalar. The LMS filter converges this signal with
desired signal by adjusting filter weights.

• filterError — Filter error , returned as a scalar. This value is the difference between filtered
output and desired signal .

• filterWeights — Filter weights , returned as a scalar for the HDLFullySerialLMSModel.slx
model and a vector of the same size as filter length for the HDLDelayLMSFilterModel.slx
model.

• ready — Ready signal, returned as a Boolean scalar. This port is applicable for the
HDLFullySerialLMSModel.slx model. This signal indicates when to provide the next data.

This LMS filter model accepts the filter length as a parameter.

For a fixed-point implementation, internal word length calculations are based on the assumption that
the input is a unit power signal. The recommended data type for the inputs and the observed and
desired signals is fixdt(1,16,14). The recommended data type for the step size is
fixdt(0,18,18).

System Identification of FIR Filter

System identification is a process to find unknown system filter coefficients using an adaptive filter.
This section shows how to find unknown system coefficients.

Create a filter object for an unknown system.

filterLength = 16;
filterObj = dsp.FIRFilter;
filterObj.Numerator = fircband(filterLength-1,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],...
 {'w' 'c'});
filterObj %#ok

filterObj =

 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0346 0.0069 0.0766 0.0156 -0.0785 -0.0448 ...]
 InitialConditions: 0

 Use get to show all properties

Specify a model.

% For the fully serial LMS filter, use 'HDLFullySerialLMSModel', for
% delayed LMS filter use 'HDLDelayedLMSModel'
modelname = 'HDLFullySerialLMSModel';

 HDL Implementation of LMS Filter

1-13

Pass the unit power signal, observedSignal to the FIR filter. The desiredSignal is the sum of the
output of the unknown system (FIR filter) and the additive noise signal noise. The LMS filter adapts
its coefficients until its transfer function matches the transfer function of the unknown system.

observedSignal = randn(1500,1);
noise = 0.001*randn(1500,1);
desiredSignal = filterObj(observedSignal) + noise;
stepSize = 0.01;

% Create input and control signals
adaptIn = true(length(observedSignal),1);
resetIn = false(length(observedSignal),1);
validIn = true(length(observedSignal),1);

if strcmpi(modelname,'HDLFullySerialLMSModel')
 simtime = length(observedSignal)*(filterLength+19) + 10;
else
 simtime = length(observedSignal) + 100;
end
out = sim(modelname);

% Capture valid data outputs
actFilterOut = out.filterOut;
actCoeffOut = out.coeffOut;
actErrorOut = out.errorOut;

Plot the outputs.

figure;
plot(1:1:length(observedSignal),double([desiredSignal,actFilterOut,actErrorOut]))
title('System Identification of FIR Filter')
legend('Desired','Output','Error')
xlabel('Time Index')
ylabel('Signal Value')

1 Featured Examples

1-14

Because the output weights for the HDLFullySerialLMSModel.slx model are serial, you must
convert the weights to a vector to represent the coefficients of the LMS filter, which is adapted to
resemble the unknown system (FIR filter). To confirm the convergence, compare the numerator of the
FIR filter with the estimated weights of the LMS filter.

figure;
% Compare actual filter weights with estimated filter weights
if strcmpi(modelname,'HDLFullySerialLMSModel')
 val = (filterLength)*(length(observedSignal)-1);
 stem([(filterObj.Numerator).' double(actCoeffOut((val+1):(val+filterLength)))]);
else
 val = (length(observedSignal)-1);
 stem([(filterObj.Numerator).' double(actCoeffOut((val+1),:)).']);
end
xlabel('Coefficient Index')
ylabel('Coefficient Value')
title('Filter Weights')
legend('Actual filter weights','Estimated filter weights', ...
 'Location','NorthEast')

 HDL Implementation of LMS Filter

1-15

Verification and Results

For verification, compare the outputs from this example with the outputs from the dsp.LMSFilter
function.

lms = dsp.LMSFilter(filterLength,'StepSize',stepSize);
[y,e,w] = lms(observedSignal,desiredSignal);

Plot the Simulink and reference outputs and verify the difference between them.

figure;
% Compare Simulink and reference filtered out
subplot(3,1,1)
plot(1:length(observedSignal),[actFilterOut,y])
title('Comparision Between Simulink and Reference Outputs')
subtitle('Filter Output')
legend('Simulink filter output','Reference filter output','Location','bestoutside')
xlabel('Time Index')
ylabel('Signal Value')

% Compare Simulink and reference filter error out
subplot(3,1,2);
plot(1:length(observedSignal),[actErrorOut,e])
subtitle('Error Output')
legend('Simulink error output','Reference error output','Location','bestoutside')
xlabel('Time Index')
ylabel('Signal Value')

1 Featured Examples

1-16

% Compare Simulink and reference filtered coefficients
subplot(3,1,3);
if strcmpi(modelname,'HDLFullySerialLMSModel')
 plot(1:filterLength,[double(actCoeffOut((val+1):(val+filterLength))),w])
else
 plot(1:filterLength,[double(actCoeffOut((val+1),:)).',w])
end
subtitle('Coefficients Output')
legend('Simulink coefficients','Reference coefficients','Location','bestoutside')
xlabel('Time Index')
ylabel('Signal Value')

Noise Cancellation Using LMS Filter

Run the HDLLMSNoiseRemoval.m script to remove noise from the information signal. The
information signal is a pure sine wave corrupted with additive noise, which is considered as a desired
signal. The observed signal is correlated with noise data and fed to the LMS filter. When the filter
converges, it provides the noise-canceled information signal from the filterError port. This plot
shows the information signal, noisy signal, and the output noise corrected signal from the fully serial
LMS filter in the HDLFullySerialLMSModel.slx model. You can generate similar plot for the
transpose delayed LMS filter by specifying the model HDLDelayedLMSModel.slx in the
HDLLMSNoiseRemoval.m script.

>> HDLLMSNoiseRemoval

HDLLMSNoiseRemoval

 HDL Implementation of LMS Filter

1-17

Mean Square Performance

Run the HDLLMSConvergencePlot.m script to plot the mean square error (MSE) performance of the
LMS algorithm. The MSE measures the average squares of the errors between the desired signal and
the primary input signal to the adaptive filter. This plot is the convergence plot for the fully serial
LMS filter in the HDLFullySerialLMSModel.slx model and the transpose delayed LMS filter in the
HDLDelayedLMSModel.slx model. The convergence plot of the transpose delayed LMS filter for the
small step sizes closely matches with the fully serial LMS filter.

>> HDLLMSConvergencePlot

HDLLMSConvergencePlot

1 Featured Examples

1-18

Throughput

The throughput for the fully serial LMS filter in the HDLFullySerialLMSModel.slx model is
calculated as (fMax / (FL + t)). The throughput for transpose delayed LMS filter in the
HDLDelayedLMSModel.slx model is equivalent to fMax , which is independent of the filter length.
In this calculation: fMax is the maximum operating frequency, FL is the filter length, and t is the
number of pipeline delays required in feedback path of fully serial LMS implementation. t is 19 in this
implementation.

HDL Code Generation and Implementation Results

To generate HDL code for this example, you must have HDL Coder™ product. To generate HDL code
and HDL test bench, use the makehdl and makehdltb commands. The block is synthesized on a
Xilinx® Zynq®-7000 ZC706 evaluation board.

For the fully serial LMS filter in the HDLFullySerialLMSModel.slx model, this example achieves a
clock frequency of 470 MHz. For the transpose delayed LMS filter in the HDLDelayedLMSModel.slx
model, this example achieves a clock frequency of 450 MHz. These tables show the post place and
route resource utilization results for the real-valued input word length of 16 and step-size word
length of 18 for a filter length of 16 for both models. The resource utilization and synthesis frequency
vary with the filter length and input word lengths.

Display the resource utilization for the fully serial LMS filter in the HDLFullySerialLMSModel.slx
model.

F = table(...
 categorical({'Slice Registers'; 'Slice LUT';'DSP'}), ...

 HDL Implementation of LMS Filter

1-19

 categorical({'551'; '412'; '3'}), ...
 categorical({'437200'; '218600'; '900'}), ...
 categorical({'0.13'; '0.19'; '0.33'}), ...
 'VariableNames',{'Resources','Utilized','Available','Utilization (%)'});
disp(F)

 Resources Utilized Available Utilization (%)
 _______________ ________ _________ _______________

 Slice Registers 551 437200 0.13
 Slice LUT 412 218600 0.19
 DSP 3 900 0.33

Display the resource utilization for the transpose delayed LMS filter in HDLDelayedLMSModel.slx
model.

F = table(...
 categorical({'Slice Registers'; 'Slice LUT';'DSP'}), ...
 categorical({'3395'; '2914'; '33'}), ...
 categorical({'437200'; '218600'; '900'}), ...
 categorical({'0.78'; '1.33'; '3.67'}), ...
 'VariableNames',{'Resources','Utilized','Available','Utilization (%)'});
disp(F)

 Resources Utilized Available Utilization (%)
 _______________ ________ _________ _______________

 Slice Registers 3395 437200 0.78
 Slice LUT 2914 218600 1.33
 DSP 33 900 3.67

References

[1] Hayes,M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,
1996.

See Also
Functions
dsp.LMSFilter

1 Featured Examples

1-20

High Performance DC Blocker for FPGA

This example shows how to create a DC blocking filter for a communications system by using the
Biquad Filter block in DSP HDL Toolbox™.

A DC blocking filter is used in many communications system designs to simplify other filtering
requirements. A DC blocking filter is a overall high-pass filter with a very low frequency transition
frequency that typically achieves the highpass response by subtracting a lowpass version of the input
from the input, leaving just the portions of the signal above DC.

This application is a natural fit for infinite impulse-response (IIR) filters since they are able to provide
a steep transition bandwidth with fewer resources than a more common finite impulse response (FIR)
filter. A drawback of an IIR filter is that stability of the filter is not guaranteed, so generally a second-
order section (SOS), also known as a biquad filter, design is used. Biquad filters can guarantee
stability even after fixed-point quantization.

This example shows three implementations of a DC blocker algorithm for hardware. The Biquad Filter
block in DSP HDL Toolbox provides options to select different SOS filter architectures to achieve
different tradeoffs of resources and throughput in your design.

Reference DC Blocker Block

The Communications Toolbox™ DC Blocker Simulink block can provide a behavioral reference for
your hardware design. It supports four types of filters: IIR, FIR, cascaded integrator comb, and
subtract mean. This example focuses on IIR filters. The block is designed for floating-point operation
and has two parameters for an IIR DC blocking filter: the normalized bandwidth of the lowpass
stopband and the order of the filter. The block automatically designs an SOS or biquad filter from
these parameters with a passband ripple of 0.1 dB and a stopband attenuation of 60 dB.

The block uses an elliptical filter design method, which provides steeper roll-off transition bandwidth
characteristics than Butterworth or Chebyshev filter designs and often allows the lowest order for a
given frequency response. The downside to this type of filter is that the poles and zeros are often very
close to the unit circle and the stability of a quantized filter can sometimes be challenging.

When you design SOS or biquad filters, use a design method that returns zeros, poles, and gain,
(z,p,k), rather than the multiplied-out transfer function, (b,a), since the transfer function
polynomial can have numerical instability. The DC Blocker block returns zeros, poles, and gain similar
to this filter design code. The poles in the pole-zero plot (represented by x values) are very near but
still inside the unit circle, making the double-precision filter stable.

filterOrder = 6; % user set, default value
normalizedBandwidth = 0.001; % user set, default value
passbandRipple = 0.1; % non-settable, in dB
stopbandAtten = 60; % non-settable, in dB
[z,p,k] = ellip(filterOrder,passbandRipple,stopbandAtten,normalizedBandwidth);
[sos,g] = zp2sos(z,p,k);
f1 = fvtool(sos);
f2 = fvtool(sos,'polezero');
zoom(f2,[0.98 1.02 -0.03 0.03]);

 High Performance DC Blocker for FPGA

1-21

1 Featured Examples

1-22

Design Filter for Hardware

Quantizing the numerator and denominator coefficient independently allows for better results, so this
code separates the numerator and denominator before quantization. This design has 12-bit input and
targets a typical DSP element in an FPGA, so the example uses 20-bits for numerator and
denominator coefficients. The pole-zero plot shows the quantized fixed-point numerator and
denominator coefficients after they are converted back to double data type for analysis. You can
confirm that the quantized filter is stable by changing the Analysis setting in the Filter Visualization
Tool to Filter Info.

numerator = sos(:,1:3);
denominator = sos(:,4:6);
scaleValues = g;
scaledDoubleSOS = [double(fi(numerator,1,20)),double(fi(denominator,1,20))];
f3 = fvtool(scaledDoubleSOS,'polezero');
zoom(f3,[0.98 1.02 -0.03 0.03]);

 High Performance DC Blocker for FPGA

1-23

The example model shows three different modes of the Biquad Filter block as well as the original
behavioral model of the DC Blocker from the Communications Toolbox library.

modelname = 'DCBlockerHDL';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

1 Featured Examples

1-24

The DF2T subsystem contains a Biquad Filter block with the Filter structure parameter set to
Direct form II transposed.

The Pipe subsystem contains a Biquad Filter block with the Filter structure parameter set to
Pipelined feedback form.

The FramePipe subsystem also contains a Biquad Filter block with the Filter structure parameter
set to Pipelined feedback form. This subsystem uses 4-sample vector input to parallelize the
filter operation and increase throughput.

In each of the subsystems, the result of the Biquad Filter is subtracted from the input data delayed to
match the latency of the filter. All of the subsystems compute the same results, but each filter uses
different hardware resources and synthesizes to a different clock rate. The rest of this example
compares the resources, clock rate, and throughput of each of the biquad filter structures.

Direct Form II Transposed Filter Structure

To create a unique folder for the generated HDL code for each filter implementation, add the
TargetDirectory name-value argument to the makehdl function call. Use this command to
generate HDL code for the direct-form transposed filter.

makehdl('DCBlockerHDL/DF2T','TargetDirectory','df2t');

This figure shows the Xilinx® Vivado® synthesis results for the DF2T filter implementation. The
synthesis tool was run with a 5 ns clock period to target 200 MHz operation, but the post-synthesis
timing report shows that the minimum achievable clock period is only 6.754 ns or around 148 MHz.
The critical path in this filter implementation goes through a DSP block, which is efficient use of
hardware resources, but does not meet the 5 ns target.

 High Performance DC Blocker for FPGA

1-25

The resource utilization for this filter structure, which has three second-order sections and one gain
value, is 24 DSP elements, with 6 in the denominator and 18 in the numerator. The synthesis tool
implemented the gain using shift-and-add logic.

Pipelined Feedback Filter Structure for Higher Clock Rate

The pipelined structure creates a new denominator that has higher powers in Z (that is, more delay).
This new denominator introduces more poles in the filter but these poles are canceled by a modified
numerator. The new poles are created from the roots of the original denominator raised to a power
determined by the amount of pipelining required. Since the poles are less than one for a stable filter,
the new poles are smaller than the starting values, which adds to filter stability. This structure usually
results in higher synthesis clock rates because of the additional pipelining. Use this command to
generate HDL code for the pipelined feedback filter.

makehdl('DCBlockerHDL/Pipe','TargetDir','pipe');

The post-synthesis timing report shows that the design has a minimum clock period of 3.142 ns or
around 318 MHz, which is more than twice the speed of the DF2T version. Since this filter processes
one sample per clock, this rate corresponds to 318 megasamples/s.

The resource utilization for this filter structure uses 84 DSP elements. There are 6 DSPs in the
denominator and 18 DSPs in the numerator as before, and the new numerators (one per section) that
cancel the added poles in the denominator use 60 DSP elements in total.

1 Featured Examples

1-26

Pipelined Filter with Frame Input for Highest Clock Rate

This filter implementation increases throughput by using the frame input and output mode. This
mode goes by many names including frame-based, vector, and super-sample-rate (SSR). All of these
names mean that the algorithm processes more than one sample per clock cycle. You can use the
buffer block in Simulink to switch between input sizes and try different designs. The model in this
example is configured for four samples per clock. Use this command to generate HDL code for the
pipelined feedback filter with frame-based input.

makehdl('DCBlockerHDL/FramePipe','TargetDir','framepipe');

The post-synthesis timing report shows that the achievable clock rate for the four-sample-per-clock
implementation is around 275 MHz.

The critical path for this implementation is in the pipelined addition of the modified numerator, which
has large word lengths due to the fixed-point requirements of this particular filter design.

 High Performance DC Blocker for FPGA

1-27

Even with the lower clock rate, the throughput per clock is four times larger so this design processes
about 1.1 gigasample/s.

The resource utilization for this filter structure shows that this filter uses 510 DSP elements and
many more CLB elements as well. This increase is because the size of the new numerator added to
cancel poles in the expanded denominator scales with the number of samples per cycle.

The pipeline depth for the Biquad Filter block in this mode is 4 pipeline stages per multiply and one
pipeline stage for every addition. For a given number of samples per clock, FrameSize, the size of
the new numerator is 2*FrameSize*4-1. For a frame size of 4, the new numerator has 31 taps.

Going Further

If you explore filter stability by quantizing the numerator and denominator using 16 bits instead of 20
bits, you can see that the filter becomes unstable. The filter coefficients in this example actually
require a minimum word length of 19 bits for a stable filter.

You can try different frame sizes to increase throughput. As the frame size increases, the
denominator coefficients get smaller and the filter numerics become more challenging. If the

1 Featured Examples

1-28

coefficients are quantized to zero, the Biquad Filter block issues a warning. Sometimes, increasing
the word length for the denominator is the only way to avoid numeric problems since the scale of the
two internally computed coefficients can differ by more than the word length you select.

At some point, the size of the logic added to handle a larger frame size exceeds the size of an
equivalent FIR filter. In this design, you can experiment with the transition bandwidth for an FIR
filter, starting from the normalized frequency used to design the IIR filter of 0.001. An FIR filter that
matches that frequency specification has over 5000 taps and consumes considerably more resources
than the IIR filter in the Biquad Filter block.

See Also
Blocks
Biquad Filter

 High Performance DC Blocker for FPGA

1-29

HDL Implementation of Four Channel Synthesizer and
Channelizer

This example shows how to synthesize a series of four stereo signals into a broadband signal using a
channel synthesizer and how to split the synthesized broadband signal into four individual
narrowband signals using a channelizer. The Simulink® model in this example contains a
Synthesizer Channelizer subsystem with Channel Synthesizer and Channelizer blocks. These
blocks support HDL code generation.

Data Source

Use these stereo signals as model inputs.

• FunkyDrums.mp3
• SoftGuitar.mp3
• RockDrums.mp3
• RockGuitar.mp3

Each stereo signal has two samples. The two channels in the model represent the left and right
channels of a stereo signal. To store the channels of a stereo signal, convert each signal into a
complex signal, multiplex, and then transpose to form a 1-by-2 vector.

Model Structure

Open the model.

model = 'HDLSynthesizerChannelizer';
open_system(model);

Model Parameters

The InitFcn callback sets up the model. To access the InitFcn callback, right-click the model, click
Model Properties, open the Callbacks tab, and then click InitFcn. In the Channelizer block, set

1 Featured Examples

1-30

the Number of frequency bands parameter to 4. Each band has one FIR filter and each FIR filter
has 24 taps, so the model has total of 96 filter taps. The designMultirateFIR function designs a
multirate FIR filter and generates the filter coefficients. Set the number of taps per band and
stopband attenuation. Calculate the filter coefficients by using the designMultiRateFIR function.

M = 4; % number of frequency bands
P = 24; % number of taps per band
Astop = 120; % stop band attenuation
b = designMultirateFIR(1,M,ceil(P/2),Astop); % filter coefficients

Synthesizer and Channelizer

The Channel Synthesizer block synthesizes the input signals into a single broadband signal of size 4-
by-1 by using an FFT-based synthesis filter bank. The model passes this signal to the Channelizer
block. The Channelizer block splits the broadband input signal into four narrowband output signals.
The output of the Channelizer block is a 1-by-4 vector, where each channel represents a narrowband.

Open the Synthesizer Channelizer subsystem.

open_system([model '/Synthesizer Channelizer']);

View the spectra of the input, synthesized signal, channelized signal, and synthesized-channelized
output signal. The Synthesized Spectrum window shows the spectrum of the broadband signal. The
Channelized Spectrum window shows the spectra of the four narrowband signals. The input and
output spectra match for any selected signal.

open_system([model '/Control Scope']);
sim(model)

 HDL Implementation of Four Channel Synthesizer and Channelizer

1-31

1 Featured Examples

1-32

 HDL Implementation of Four Channel Synthesizer and Channelizer

1-33

1 Featured Examples

1-34

 HDL Implementation of Four Channel Synthesizer and Channelizer

1-35

Audio Capture

Collect the output samples and reproduce the audio.

% Create a |dsp.AudioFileReader| object with default settings.
fileReader = dsp.AudioFileReader('output.ogg');

% Return a structure containing information about the audio file.
fileInfo = audioinfo('output.ogg');

% Create an |audioDeviceWriter| object and specify the sample rate.
deviceWriter = audioDeviceWriter('SampleRate',fileInfo.SampleRate);

% Reduce the computational load of initialization in the audio stream loop.
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

% In the audio stream loop, read the audio signal frame from the file and
% write the frame to your device.
while ~isDone(fileReader)
audioData = fileReader();
deviceWriter(audioData);
end

% Close the input file and release the device.
release(fileReader);

1 Featured Examples

1-36

release(deviceWriter);

% Save and close the model.
open_system([model '/Control Scope']);
close_system(model,0)

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example, you must have the HDL Coder™ product. Generate HDL
code and an HDL testbench for the Synthesizer Channelizer subsystem. Synthesize this
subsystem on a Xilinx® Zynq®-7000 ZC706 evaluation board. The table shows the post-place-and-
route resource utilization results. The design meets the timing requirement with a clock frequency of
191.4 MHz. The resources and frequencies vary with the parameter values that you select in the
block mask.

T = table(...
 categorical({'LUTs'; 'Slice Registers'; 'DSPs'}),...
 categorical({'1215'; '2861'; '384'}),...
 'VariableNames',{'Resource','Usage'})

T =

 3x2 table

 Resource Usage
 _______________ _____

 LUTs 1215
 Slice Registers 2861
 DSPs 384

See Also
Channelizer | Channel Synthesizer

Related Examples
• “High-Throughput Channelizer for FPGA”

 HDL Implementation of Four Channel Synthesizer and Channelizer

1-37

Gigasamples-per-Second Correlator and Peak Detector

This example shows how to implement a high-throughput frame-based correlator and peak detector.
The system is suitable for applications such as lidar and mm-wave radar.

Lidar and radar systems operate by transmitting pulses, receiving the sent pulse in a stream of data,
and using signal processing techniques to determine where in the receiver stream the pulse is
located. When you design such a system, one of the main considerations is the pulse width or pulse
duration. Pulse width is a measure (in seconds) of how long each pulse transmission is. Longer pulses
have more energy and can therefore increase the range of the system. Shorter pulses cannot travel as
far, but they can achieve greater accuracy in resolving the distance between objects. The pulse width
determines the signal bandwidth. For example, a pulse width of 2 ns results in a signal bandwidth of
500 MS/s. The signal bandwidth is then used to determine the minimum distance where separate
objects can be resolved from one another. This distance is the range ambiguity and is equal to c/(2*B),
where c is the speed of light, and B is the signal bandwidth.

In high-precision lidar systems, the pulse width can often be as short as 4 ns. This width corresponds
to a signal bandwidth of 250 MS/s and range ambiguity of 0.6 m. This calculation does not assume
any additional signal processing, such as pulse compression, which could improve the accuracy. To
meet the Nyquist rate, the received signal must be sampled at a rate of at least 500 MS/s. In practice,
systems often oversample to improve performance. Typically, FPGAs run at up to 500 MHz. To
process data with sample rates greater than the maximum clock rate, designs use frame-based
processing, where each block operates on a vector of input data every clock cycle. In this way, the
processing is parallel and sample rate is higher without an increase in clock rate.

This example describes a correlation and peak detection system that uses a 250 MHz clock and an
input frame of 16 samples. These parameters enable the system to process a 4 GS/s input stream
oversampled by a factor of 16.

Waveform Generation and Matched Filter Design

Broadly, lidar and radar systems can be split into pulsed waveform systems and continuous waveform
systems. Pulsed waveform systems transmit bursts of data and then wait for a period, whereas
continuous waveform systems are always transmitting. In each kind of system, you can apply different
kinds of modulation to the waveform to enhance different properties such as range and resolution.
This example shows a pulsed laser lidar system without signal modulation.

An ideal pulse has a rectangular shape in the time domain, corresponding to a sinc function in the
frequency domain. The physical properties of laser systems mean that there is a ramp-up period to
peak output, followed by a ramp-down period. Model this input by using a Gaussian function, then
generate a stream of zeros and place pulses in the stream.

bt = 1; % 3 dB bandwidth-symbol time
sps = 16; % 16 times oversampled
span = 1; % 1 symbol
pulse = gaussdesign(bt,span,sps); % Pulse shape
plot(pulse,'o-');
title('Single Gaussian Pulse')

1 Featured Examples

1-38

pulseLength = 17; % Number of samples per symbol
N = pulseLength * 200; % 200 symbols
tx = zeros(N,1);
temp = primes(round(.80*N)); % Place pulses at a few scattered locations. Offset is a prime number.
locations = temp(45:45:end);
for index = 1:length(locations)
 tx(locations(index):locations(index) + pulseLength - 1) = pulse;
end
figure
plot(tx);
title('Input Pulse Signal')

 Gigasamples-per-Second Correlator and Peak Detector

1-39

Now, add noise to simulate the channel and design a matched filter, which is the time-reversed
conjugate of the pulse. Measure the noise inserted to make sure the calculation was correct. The
pulse is symmetric and equivalent to the matched filter.

snr = 3;
pulseStream = awgn(tx,snr,10*log10(cov(pulse)),1); % Add in AWGN.
figure
plot(pulseStream);
title('Input Pulse Signal with Noise')
noise = pulseStream - tx;
fprintf('Computed SNR is %3.2f \n',10*log10(cov(pulse)/cov(noise)));
h = flipud(conj(pulse));
isequal(h,pulse)

Computed SNR is 3.02

ans =

 logical

 1

1 Featured Examples

1-40

Simulink Design

The example model implements a frame-based correlator and peak detector, using the input
waveform and filter coefficients from the previous section. The CorrelatorPeakDetector
subsystem has three outputs. The magnitude-squared matched filter output shows the boost in the
signal-to-noise ratio (SNR) from the correlator. The detected output is a stream of Boolean values,
which indicates when a pulse is detected. The valid output indicates when the output data is
available.

vectorSize = 16; %#ok<NASGU>
windowLength = 19;
model = 'CorrelationandPeakDetection';
load_system(model)
set_param(model,'SimulationCommand','Update')
open_system(model)

 Gigasamples-per-Second Correlator and Peak Detector

1-41

The DUT consists of a correlator or matched filter implemented using a Discrete FIR Filter block and
a PeakDetector subsystem. The Discrete FIR Filter convolutes the input stream with the matched
filter coefficients and passes the result to the PeakDetector subsystem. The PeakDetector uses a
windowing method to determine local maxima.

model = 'CorrelationandPeakDetection/CorrelatorPeakDetector';
open_system(model)

The PeakDetector subsystem forms a sliding window of the FIR results, which is [19x1] for each
element of the [16x1] input. An overall vector of [34x1] forms each subwindow. Inside the
VectorPeakPick subsystem, the VectorTappedDelay subsystem forms this window and passes it
to the subtract_midpoint subsystem, which implements the peak detection algorithm. The peak
detection algorithm assumes that peaks are present when all values in the window subtracted by the
middle value are less than or equal to 0. A For Each subsystem repeats this calculation 16 times to
check each subwindow.

model = 'CorrelationandPeakDetection/CorrelatorPeakDetector/PeakDetector';
open_system(model)

1 Featured Examples

1-42

Verification

Next, run the simulation and verify that the model detects pulses where you expect them, using the
information from waveform generation.

sim('CorrelationandPeakDetection.slx')
xlocations = find(detected==1); % Find locations where peaks were detected.
prevxlocation = 0; % Check for multiple points for the same peak in the loop below.
addr = 1;
locationsHDL = zeros(length(locations),1);
for ii = 1:1:length(xlocations) % If there are multiple points for the same peak, pick one.
 if xlocations(ii) ~= prevxlocation+1
 locationsHDL(addr) = xlocations(ii);
 addr = addr + 1;
 prevxlocation = xlocations(ii);
 end
end
latencyHDL = round(mean(locationsHDL - locations')); % Latency is constant, and is the difference between samples.
locationsDetected = locationsHDL - latencyHDL %#ok<NOPTS,NASGU>

locationsDetected =

 197
 463
 761
 1069
 1427
 1733
 2087
 2422

Observe the magnitude squared output to see that the matched filter has significantly boosted the
SNR.

plot(dataOut);
title('Output Signal with Noise Filtered Out')

 Gigasamples-per-Second Correlator and Peak Detector

1-43

HDL Implementation Results

To generate HDL code from this example model, you must have the HDL Coder™ product. HDL was
generated for the CorrelatorPeakDetector subsystem and synthesized with Xilinx® Vivado™
targeting a Xilinx Zynq®-7000 SoC ZC706 evaluation board. The design meets timing with a
constraint of 400 MHz. The table shows the post place-and-route resource utilization results.

T = table(...
 categorical({'DSP';'LUT';'Flip Flop';'BRAM'}), ...
 categorical({'288'; '9549'; '9092';'0'}), ...
 'VariableNames',{'Resource','Usage'}) %#ok<NOPTS>

T =

 4x2 table

 Resource Usage
 _________ _____

 DSP 288
 LUT 9549
 Flip Flop 9092
 BRAM 0

1 Featured Examples

1-44

Sample Rate Modification Using Scalar Processing

You can adapt the model to process input with different sample rates. For example, you can process
an input with 25 MS/s oversampled by a factor of 10 and, therefore, with a throughput of 250 MS/s
using scalar rather than frame-based input. DSP HDL Toolbox™ library blocks automatically switch
between frame and scalar algorithms according to the dimension of the data at the input port. In this
example, you can choose to process frame or scalar input by modifying a single parameter,
vector_size. The model automatically determines the correct dimensions for frame or scalar input
and processes the data accordingly.

vectorSize = 1; % Scalar processing
sim('CorrelationandPeakDetection.slx') % Run simulation.
xlocations = find(detected==1); % Find locations where peaks are detected.
prevxlocation = 0; % Check for multiple points for the same peak in the loop below.
addr = 1;
locationsHDL = zeros(length(locations),1);
for ii = 1:1:length(xlocations) % If there are multiple points for same peak, pick one.
 if xlocations(ii) ~= prevxlocation + 1
 locationsHDL(addr) = xlocations(ii);
 addr = addr + 1;
 prevxlocation = xlocations(ii);
 end
end
latencyHDL = round(mean(locationsHDL-locations')); % Latency is constant, and is the difference between samples.
locationsDetected = locationsHDL-latencyHDL %#ok<NOPTS>

locationsDetected =

 197
 463
 761
 1069
 1427
 1733
 2087
 2422

 Gigasamples-per-Second Correlator and Peak Detector

1-45

NFC Digital Downconverter

This example shows how to decimate a 100 MS/s ADC signal down to 424 kS/s for a near-field
communication (NFC) system.

Near-field communication systems operate at data rates of 424, 212, or 106 kS/s. Typical ADCs used
in test and measurement (T&M), software-defined radio (SDR), and other prototyping equipment
have much higher sample rates in the MS/s range. When you stream data from this equipment to a
host computer or processor, the high sample rate can use a lot of memory and processor resources.
Lowering the sample rate on the FPGA before streaming data to the host can save host resources.
This example includes a digital downconverter (DDC) that converts a 100 MS/s input stream down to
424 kS/s output. The overall rate change is 235.8409566. This example differs from the “Implement
Digital Downconverter for FPGA” on page 1-61 example in two ways. First, the decimation factor is
much larger in this example, which requires different decimation filters. Second, this example must
compute a fractional rate change, rather than a strictly integer rate change.

DDC Structure

The DDC consists of a numerically controlled oscillator (NCO), mixer, and decimating filter chain. The
filter chain consists of a cascade integrator-comb (CIC) decimator, CIC gain correction, CIC
compensation decimator (FIR), Farrow rate converter, halfband FIR decimator, and a final FIR
decimator.

The overall response of the filter chain is equivalent to that of a single decimation filter with the same
specification. However, splitting the filter into multiple decimation stages results in a more efficient
design that uses fewer hardware resources.

The CIC decimator provides a large initial decimation factor, which enables subsequent filters to work
at lower rates. The CIC compensation decimator improves the spectral response by compensating for
the CIC droop while decimating by two. The halfband is an intermediate decimator, and the final
decimator implements the precise Fpass and Fstop characteristics of the DDC. The lower sampling
rates near the end of the chain mean the later filters can optimize resource use by sharing
multipliers.

This figure shows a block diagram of the DDC:

DDC Design

To design the DDC, you use floating-point operations and filter-design functions in MATLAB®.

DDC Parameters

1 Featured Examples

1-46

This example designs the DDC filter characteristics to meet these specifications for the given input
sampling rate and carrier frequency.

FsIn = 100e6; % Sampling rate of DDC input
FsOut = 424e3; % Sampling rate of DDC output
Fc = 13.56e6; % Carrier frequency
Fpass = 424e3; % Passband frequency, equivalent to sampling rate
Fstop = 480e3; % Stopband frequency
Ap = 0.1; % Passband ripple
Ast = 60; % Stopband attenuation

CIC Decimator

The first filter stage is a CIC decimator because of its ability to efficiently implement a large
decimation factor. The response of a CIC filter is similar to a cascade of moving average filters, but a
CIC filter uses no multiplication or division. As a result, the CIC filter has a large DC gain.

cicParams.DecimationFactor = 16;
cicParams.DifferentialDelay = 1;
cicParams.NumSections = 3;
cicParams.FsOut = FsIn/cicParams.DecimationFactor;

cicFilt = dsp.CICDecimator(cicParams.DecimationFactor, ...
 cicParams.DifferentialDelay,cicParams.NumSections) %#ok<*NOPTS>
cicFilt.FixedPointDataType = 'Minimum section word lengths';
cicFilt.OutputWordLength = 18;
cicGain = gain(cicFilt)

cicFilt =

 dsp.CICDecimator with properties:

 DecimationFactor: 16
 DifferentialDelay: 1
 NumSections: 3
 FixedPointDataType: 'Full precision'

cicGain =

 4096

Because the CIC gain is a power of two, a hardware implementation can easily correct for the gain
factor by using a shift operation. For analysis purposes, the example represents the gain correction in
MATLAB with a one-tap dsp.FIRFilter System object™.

cicGainCorr = dsp.FIRFilter('Numerator',1/cicGain)
cicGainCorr.FullPrecisionOverride = false;
cicGainCorr.CoefficientsDataType = 'Custom';
cicGainCorr.CustomCoefficientsDataType = numerictype(fi(cicGainCorr.Numerator,1,16));
cicGainCorr.OutputDataType = 'Custom';
cicGainCorr.CustomOutputDataType = numerictype(1,18,16);

cicGainCorr =

 NFC Digital Downconverter

1-47

 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: 2.4414e-04
 InitialConditions: 0

 Use get to show all properties

Display the magnitude response of the CIC filter with and without gain correction by using fvtool.
For analysis, combine the CIC filter and the gain correction filter into a dsp.FilterCascade System
object. CIC filters use fixed-point arithmetic internally, so fvtool plots both the quantized and
unquantized responses.

ddcPlots.cicDecim = fvtool(...
 cicFilt, ...
 dsp.FilterCascade(cicFilt,cicGainCorr), ...
 'Fs',[FsIn,FsIn]);
legend(ddcPlots.cicDecim, ...
 'CIC No Correction', ...
 'CIC With Gain Correction');

CIC Droop Compensation Filter

Because the magnitude response of the CIC filter has a significant droop within the passband region,
the example uses a FIR-based droop compensation filter to flatten the passband response. The droop

1 Featured Examples

1-48

compensator has the same properties as the CIC decimator. This filter implements decimation by a
factor of two, so you must also specify bandlimiting characteristics for the filter. Use the design
function to return a filter System object with the specified characteristics.

compParams.R = 2; % CIC compensation decimation factor
compParams.Fpass = Fstop; % CIC compensation passband frequency
compParams.FsOut = cicParams.FsOut/compParams.R; % New sampling rate
compParams.Fstop = compParams.FsOut - Fstop; % CIC compensation stopband frequency
compParams.Ap = Ap; % Same passband ripple as overall filter
compParams.Ast = Ast; % Same stopband attenuation as overall filter

compSpec = fdesign.decimator(compParams.R,'ciccomp', ...
 cicParams.DifferentialDelay, ...
 cicParams.NumSections, ...
 cicParams.DecimationFactor, ...
 'Fp,Fst,Ap,Ast', ...
 compParams.Fpass,compParams.Fstop,compParams.Ap,compParams.Ast, ...
 cicParams.FsOut);
compFilt = design(compSpec,'SystemObject',true)

% Fixed point settings
compFilt.FullPrecisionOverride = false;
compFilt.CoefficientsDataType = 'Custom';
compFilt.CustomCoefficientsDataType = numerictype([],16,15);
compFilt.ProductDataType = 'Full precision';
compFilt.AccumulatorDataType = 'Full precision';
compFilt.OutputDataType = 'Custom';
compFilt.CustomOutputDataType = numerictype([],18,16);

compFilt =

 dsp.FIRDecimator with properties:

 Main
 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [-0.0282 -0.0462 0.1348 0.4382 0.4382 0.1348 ...]
 Structure: 'Direct form'

 Use get to show all properties

Plot the response of the CIC droop compensation filter.

ddcPlots.cicComp = fvtool(compFilt, ...
 'Fs',FsIn,'Legend','off');

 NFC Digital Downconverter

1-49

Farrow Rate Converter

Next, a Farrow filter converts the sampling rate into an integer multiple of the output sampling rate.
This conversion means the remainder of the decimation filter chain can use integer decimation
factors. To choose the output rate of this stage, consider an integer that you can factor easily into a
few stages. The sample rate at the input to the Farrow rate converter is 3.125 MS/s, which is
approximately a 7.3702 multiple of 424 kS/s (output rate). If the Farrow rate converter output rate
was 7*424 kS/s, then the further decimation stages could not factor this rate into integer multiples.
This example uses 6*424 kS/s as the output sampling rate of this stage. This rate change is
approximately 1.22, and this decimation ratio has acceptable aliasing. Farrow filters with larger rate
changes may have increased aliasing.

The default 3rd order LaGrange coefficients are derived from a closed-form solution and work for any
rate change, so you do not need to design custom coefficients for this filter. The Farrow filter
structure is the same as that used in the dsp.VariableIntegerDelay and
dsp.FarrowRateConverter System objects.

These variables define the key parameters of the Farrow rate converter. FsIn and FsOut are the
input and output rates, respectively.

farrowParams.FsIn = compParams.FsOut ;
farrowParams.FsOut = 6*424e3;
farrowParams.RateChange = farrowParams.FsIn/farrowParams.FsOut;
farrowFilt = dsp.FarrowRateConverter('InputSampleRate',farrowParams.FsIn, 'OutputSampleRate',farrowParams.FsOut);

1 Featured Examples

1-50

To evaluate the Farrow rate converter, generate an impulse input with a length of Lx samples. Then,
calculate the oversampled impulse response of the Farrow-based variable fractional delay object. Pass
the impulse response through the object at N different fractional delays from 0 through 1-(1/N).
Store the results in the oversampled response vector p and plot the impulse and magnitude response.

Lx = 10;
x = zeros(Lx,1);
x(1) = 1;

vfd = dsp.VariableFractionalDelay(...
 'InterpolationMethod','Farrow');

N = 4;
Lp = N * Lx;
p = zeros(Lp,1);

for n=1:N
 p(n:N:end) = vfd(x,4+(N-n)/N);
end

figure(1); clf;
t = (0:length(p)-1)/N;
plot(t,p,'-o');
title("Impulse Response");
xlabel("Time Index, k" + newline + "(in samples at original rate)");
ylabel("p(k)");

 NFC Digital Downconverter

1-51

figure(2); clf;
Lfft = 1024;
Pmag = 20*log(abs(fft(p/N,1024)));
f = (0:Lfft-1) * N / Lfft;
plot(f-N/2,fftshift(Pmag)); hold on;
ax = axis;
plot([1/2 1/2],[ax(3) ax(4)],'--');
plot([1/4 1/4],[ax(3) ax(4)],'--');
plot([1/8 1/8],[ax(3) ax(4)],'--');
axis([ax(1) ax(2) -100 20]);
grid on;
title("Magnitude");
xlabel("Frequency" + newline + "(normalized by original sampling rate)");
ylabel("Gain (dBs)");
legend("Filter response","Fs/2","Fs/4","Fs/8");

Halfband Decimator

The halfband filter provides efficient decimation by two. Halfband filters are efficient because
approximately half of their coefficients are equal to zero, and those multipliers are excluded from the
hardware implementation.

hbParams.FsOut = farrowParams.FsOut/2;
hbParams.TransitionWidth = hbParams.FsOut - 2*Fstop;
hbParams.StopbandAttenuation = Ast;

hbSpec = fdesign.decimator(2,'halfband',...

1 Featured Examples

1-52

 'Tw,Ast', ...
 hbParams.TransitionWidth, ...
 hbParams.StopbandAttenuation, ...
 farrowParams.FsOut);
hbFilt = design(hbSpec,'SystemObject',true)

% Fixed point settings
hbFilt.FullPrecisionOverride = false;
hbFilt.CoefficientsDataType = 'Custom';
hbFilt.CustomCoefficientsDataType = numerictype([],16,15);
hbFilt.ProductDataType = 'Full precision';
hbFilt.AccumulatorDataType = 'Full precision';
hbFilt.OutputDataType = 'Custom';
hbFilt.CustomOutputDataType = numerictype([],18,16);

hbFilt =

 dsp.FIRDecimator with properties:

 Main
 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0.0020 0 -0.0054 0 0.0124 0 -0.0247 0 0.0470 0 ...]
 Structure: 'Direct form'

 Use get to show all properties

Plot the response of the halfband filter output.

ddcPlots.halfbandFIR = fvtool(hbFilt, ...
 'Fs',FsIn,'Legend','off');

 NFC Digital Downconverter

1-53

Final FIR Decimator

The final FIR implements the detailed passband and stopband characteristics of the DDC. This filter
has more coefficients than the earlier FIR filters. However, because the filter operates at a lower
sampling rate, it can use resource sharing for an efficient hardware implementation.

finalSpec = fdesign.decimator(2,'lowpass', ...
 'Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast,hbParams.FsOut);
finalFilt = design(finalSpec,'equiripple','SystemObject',true)

% Fixed point settings
finalFilt.FullPrecisionOverride = false;
finalFilt.CoefficientsDataType = 'Custom';
finalFilt.CustomCoefficientsDataType = numerictype([],16,15);
finalFilt.ProductDataType = 'Full precision';
finalFilt.AccumulatorDataType = 'Full precision';
finalFilt.OutputDataType = 'Custom';
finalFilt.CustomOutputDataType = numerictype([],18,16);

finalFilt =

 dsp.FIRDecimator with properties:

 Main
 DecimationFactor: 2

1 Featured Examples

1-54

 NumeratorSource: 'Property'
 Numerator: [-0.0024 -0.0012 0.0020 -0.0017 -2.0236e-04 0.0027 ...]
 Structure: 'Direct form'

 Use get to show all properties

Visualize the magnitude response of the final FIR.

ddcPlots.overallResponse = fvtool(finalFilt,'Fs',FsIn,'Legend','off');

HDL-Optimized Simulink Model

The next step in the design flow is to implement the DDC in Simulink using blocks that support HDL
code generation.

Model Configuration

The model relies on variables in the MATLAB workspace to configure the blocks and settings. It uses
the same filter chain variables defined earlier in the example. Next, define the NCO characteristics
and the input signal. The example uses these characteristics to configure the NCO block.

Specify the desired frequency resolution and calculate the number of accumulator bits that you need
to achieve the desired resolution. Set the desired spurious free dynamic range, and then define the
number of quantized accumulator bits. The NCO uses the quantized output of the accumulator to
address the sine lookup table. Also, compute the phase increment that the NCO uses to generate the

 NFC Digital Downconverter

1-55

specified carrier frequency. The NCO applies phase dither to those accumulator bits that it removes
during quantization.

nco.Fd = 1;
nco.AccWL = nextpow2(FsIn/nco.Fd)+1;
SFDR = 84;
nco.QuantAccWL = ceil((SFDR-12)/6);
nco.PhaseInc = round((-Fc*2^nco.AccWL)/FsIn);
nco.NumDitherBits = nco.AccWL-nco.QuantAccWL;

The input to the DDC comes from the ddcIn variable. For now, assign a dummy value for ddcIn so
that the model can compute its data types. During testing, ddcIn provides input data to the model.

ddcIn = 0; %#ok<NASGU>

Model Structure

This figure shows the top level of the DDC Simulink model. The model imports the ddcIn variable
from the MATLAB workspace by using a Signal From Workspace block, converts the input signal to
16-bit values, and applies the signal to the DDC. You can generate HDL code from the HDL_DDC
subsystem.

modelName = 'DDCforNFCHDL';
 open_system(modelName);
 set_param(modelName,'SimulationCommand','Update');
 set_param(modelName,'Open','on');

The HDL_DDC subsystem implements the DDC filter. First, the NCO block generates a complex phasor
at the carrier frequency. This signal goes to a mixer that multiplies the phasor with the input signal.
Then, the mixer passes the output to the filter chain, which decimates it to 424 kS/s.

set_param([modelName '/HDL_DDC'],'Open','on');

1 Featured Examples

1-56

NCO Block Parameters

The NCO block in the model is configured with the parameters defined in the nco structure.

CIC Decimation and Gain Correction

The first filter stage is a CIC decimator that is implemented with a CIC Decimator block. The block
parameters are set to the cicParams structure values. To implement the gain correction, the block
has the Gain correction parameter selected.

The model configures the filters by using the properties of the corresponding System objects. The CIC
compensation, halfband decimation, and final decimation filters operate at effective sample rates that
are lower than the clock rate by factors of 16, 32, and 64, respectively. The model implements these
sample rates by using the valid input signal to indicate which samples are valid at each rate. The
signals in the filter chain all have the same Simulink sample time.

The CIC Compensation, Halfband Decimation, and Final Decimation filters are each implemented by
an FIR Decimator. By setting the Minimum number of cycles between valid input samples
parameter, you can use the invalid cycles between input samples to share resources. For example, the
spacing between every input of CIC Compensation Decimator is 16.

The CIC Compensation Decimation, Halfband Decimation, and Final Decimation filters are fully serial
and use one multiplier for the real parts of the samples and one multiplier for the imaginary parts.
Each filter uses two multipliers in total. This resource saving is possible because of the large rate
change. The Farrow Rate Converter uses one fully serial FIR filter (one multiplier) for each row of the
coefficient matrix, for the real part of the samples and the imaginary part. The filter uses eight
multipliers in total.

Sinusoid on Carrier Test and Verification

To test the DDC, modulate a 424 kHz sinusoid onto the carrier frequency and pass the modulated sine
wave through the DDC. Then, measure the spurious-free dynamic range (SFDR) of the resulting tone
and the SFDR of the NCO output. Plot the SFDR of the NCO and the fixed-point DDC output.

% Initialize random seed before executing any simulations.
rng(0);

% Generate a 40 kHz test tone, modulated onto the carrier.
ddcIn = DDCTestUtils.GenerateTestTone(40e3,Fc);

% Demodulate the test signal by running the Simulink model.
out = sim(modelName);

% Measure the SFDR of the NCO, floating-point DDC outputs, and fixed-point
% DDC outputs.
results.sfdrNCO = sfdr(real(out.ncoOut),FsIn);
results.sfdrFixedDDC = sfdr(real(out.ddcFixedOut),FsOut);

disp('SFDR Measurements');
disp([' Fixed-point NCO SFDR: ',num2str(results.sfdrNCO) ' dB']);
disp([' Optimized fixed-point DDC SFDR: ',num2str(results.sfdrFixedDDC) ' dB']);
fprintf(newline);

% Plot the SFDR of the NCO and fixed-point DDC outputs.
ddcPlots.ncoOutSDFR = figure;
sfdr(real(out.ncoOut),FsIn);

 NFC Digital Downconverter

1-57

ddcPlots.OptddcOutSFDR = figure;
sfdr(real(out.ddcFixedOut),FsOut);

SFDR Measurements
 Fixed-point NCO SFDR: 85.3637 dB
 Optimized fixed-point DDC SFDR: 97.8753 dB

1 Featured Examples

1-58

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example, you must have the HDL Coder™ product. Use the
makehdl and makehdltb commands to generate HDL code and an HDL test bench for the HDL_DDC
subsystem. For this example, the DDC was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation
board. The table shows the post place-and-route resource utilization results. The design met timing
with a clock frequency of 340 MHz.

T = table(...
 categorical({'LUT'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}), ...
 categorical({'1547'; '386'; '3351'; '2'; '36'}), ...
 'VariableNames',{'Resource','Usage'})

T =

 5x2 table

 Resource Usage
 ________ _____

 LUT 1547
 LUTRAM 386
 FF 3351
 BRAM 2

 NFC Digital Downconverter

1-59

 DSP 36

1 Featured Examples

1-60

Implement Digital Downconverter for FPGA

This example shows how to design a digital downconverter (DDC) for radio communication
applications such as LTE, and generate HDL code.

Introduction

DDCs are widely used in digital communication receivers to convert radio frequency (RF) or
intermediate frequency (IF) signals to baseband. The DDC operation shifts the signal to a lower
frequency and reduces its sampling rate to facilitate subsequent processing stages. The DDC in this
example performs complex frequency translation followed by sample rate conversion using a four-
stage filter chain. The example starts by designing the DDC with DSP System Toolbox™ functions in
floating point. Then, each stage is converted to fixed point, and used in a Simulink® model that
generates synthesizable HDL code. The example uses these two test signals to demonstrate and
verify the DDC operation:

• A sinusoid that is modulated onto a 32 MHz IF carrier.
• An LTE downlink signal with a bandwidth of 1.4 MHz modulated onto a 32 MHz IF carrier.

The example compares the signal quality at the output of the floating-point DDC with the signal
quality at the output of the fixed-point DDC.

Finally, the example presents an implementation of the filter chain for FPGAs, and synthesis results.

This example uses DDCTestUtils, a helper class that contains functions for generating stimulus and
analyzing the DDC output. For more information, see the DDCTestUtils.m file.

DDC Structure

The DDC consists of a numerically controlled oscillator (NCO), mixer, and decimating filter chain. The
filter chain consists of a cascade integrator-comb (CIC) decimator, CIC gain correction, a CIC
compensation decimator (FIR), a halfband FIR decimator, and a final FIR decimator.

The overall response of the filter chain is equivalent to that of a single decimation filter with the same
specification. However, splitting the filter into multiple decimation stages results in a more efficient
design that uses fewer hardware resources.

The CIC decimator provides a large initial decimation factor, which enables subsequent filters to work
at lower rates. The CIC compensation decimator improves the spectral response by compensating for
the CIC droop while decimating by two. The halfband is an intermediate decimator, and the final
decimator implements the precise Fpass and Fstop characteristics of the DDC. The lower sampling
rates near the end of the chain mean the later filters can optimize resource use by sharing
multipliers.

This figure shows a block diagram of the DDC.

 Implement Digital Downconverter for FPGA

1-61

The sample rate of the input to the DDC is 122.88 Msps, and the output sample rate is 1.92 Msps.
These rates give an overall decimation factor of 64. LTE receivers use 1.92 Msps as the typical
sampling rate for cell search and master information block (MIB) recovery. The DDC filters are
designed to suit this application. The DDC is optimized to run at a clock rate of 122.88 MHz.

DDC Design

This section explains how to design the DDC using floating-point operations and filter-design
functions in MATLAB®.

DDC Parameters

This example designs the DDC filter characteristics to meet these specifications for the given input
sampling rate and carrier frequency.

FsIn = 122.88e6; % Sampling rate of DDC input
FsOut = 1.92e6; % Sampling rate of DDC output
Fc = 32e6; % Carrier frequency
Fpass = 540e3; % Passband frequency, equivalent to 36x15kHz LTE subcarriers
Fstop = 700e3; % Stopband frequency
Ap = 0.1; % Passband ripple
Ast = 60; % Stopband attenuation

CIC Decimator

The first filter stage is a CIC decimator because of its ability to efficiently implement a large
decimation factor. The response of a CIC filter is similar to a cascade of moving average filters, but a
CIC filter uses no multiplication or division. As a result, the CIC filter has a large DC gain.

cicParams.DecimationFactor = 8;
cicParams.DifferentialDelay = 1;
cicParams.NumSections = 3;
cicParams.FsOut = FsIn/cicParams.DecimationFactor;

cicFilt = dsp.CICDecimator(cicParams.DecimationFactor, ...
 cicParams.DifferentialDelay,cicParams.NumSections) %#ok<*NOPTS>
cicGain = gain(cicFilt)

cicFilt =

 dsp.CICDecimator with properties:

 DecimationFactor: 8

1 Featured Examples

1-62

 DifferentialDelay: 1
 NumSections: 3
 FixedPointDataType: 'Full precision'

cicGain =

 512

Because the CIC gain is a power of two, a hardware implementation can easily correct for the gain
factor by using a shift operation. For analysis purposes, the example represents the gain correction in
MATLAB with a one-tap dsp.FIRFilter System object™.

cicGainCorr = dsp.FIRFilter('Numerator',1/cicGain)

cicGainCorr =

 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: 0.0020
 InitialConditions: 0

 Use get to show all properties

Display the magnitude response of the CIC filter with and without gain correction by using fvtool.
For analysis, combine the CIC filter and the gain correction filter into a dsp.FilterCascade System
object. CIC filters use fixed-point arithmetic internally, so fvtool plots both the quantized and
unquantized responses.

ddcPlots.cicDecim = fvtool(...
 cicFilt, ...
 dsp.FilterCascade(cicFilt,cicGainCorr), ...
 'Fs',[FsIn,FsIn]);
legend(ddcPlots.cicDecim, ...
 'CIC No Correction', ...
 'CIC With Gain Correction');

 Implement Digital Downconverter for FPGA

1-63

CIC Droop Compensation Filter

Because the magnitude response of the CIC filter has a significant droop within the passband region,
the example uses a FIR-based droop compensation filter to flatten the passband response. The droop
compensator has the same properties as the CIC decimator. This filter implements decimation by a
factor of two, so you must also specify bandlimiting characteristics for the filter. Use the design
function to return a filter System object with the specified characteristics.

compParams.R = 2; % CIC compensation decimation factor
compParams.Fpass = Fstop; % CIC compensation passband frequency
compParams.FsOut = cicParams.FsOut/compParams.R; % New sampling rate
compParams.Fstop = compParams.FsOut - Fstop; % CIC compensation stopband frequency
compParams.Ap = Ap; % Same passband ripple as overall filter
compParams.Ast = Ast; % Same stopband attenuation as overall filter

compSpec = fdesign.decimator(compParams.R,'ciccomp', ...
 cicParams.DifferentialDelay, ...
 cicParams.NumSections, ...
 cicParams.DecimationFactor, ...
 'Fp,Fst,Ap,Ast', ...
 compParams.Fpass,compParams.Fstop,compParams.Ap,compParams.Ast, ...
 cicParams.FsOut);
compFilt = design(compSpec,'SystemObject',true)

compFilt =

1 Featured Examples

1-64

 dsp.FIRDecimator with properties:

 Main
 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [-0.0398 -0.0126 0.2901 0.5258 0.2901 -0.0126 -0.0398]
 Structure: 'Direct form'

 Use get to show all properties

Plot the combined response of the CIC filter (with gain correction) and droop compensation.

ddcPlots.cicComp = fvtool(...
 dsp.FilterCascade(cicFilt,cicGainCorr,compFilt), ...
 'Fs',FsIn,'Legend','off');

Halfband Decimator

The halfband filter provides efficient decimation by two. Halfband filters are efficient because
approximately half of their coefficients are equal to zero, and those multipliers are excluded from the
hardware implementation.

hbParams.FsOut = compParams.FsOut/2;
hbParams.TransitionWidth = hbParams.FsOut - 2*Fstop;
hbParams.StopbandAttenuation = Ast;

hbSpec = fdesign.decimator(2,'halfband',...

 Implement Digital Downconverter for FPGA

1-65

 'Tw,Ast', ...
 hbParams.TransitionWidth, ...
 hbParams.StopbandAttenuation, ...
 compParams.FsOut);
hbFilt = design(hbSpec,'SystemObject',true)

hbFilt =

 dsp.FIRDecimator with properties:

 Main
 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0.0089 0 -0.0565 0 0.2977 0.5000 0.2977 0 -0.0565 ...]
 Structure: 'Direct form'

 Use get to show all properties

Plot the response of the DDC up to the halfband filter output.

ddcPlots.halfbandFIR = fvtool(...
 dsp.FilterCascade(cicFilt,cicGainCorr,compFilt,hbFilt), ...
 'Fs',FsIn,'Legend','off');

Final FIR Decimator

1 Featured Examples

1-66

The final FIR implements the detailed passband and stopband characteristics of the DDC. This filter
has more coefficients than the earlier FIR filters, but because it operates at a lower sampling rate it
can use resource sharing for an efficient hardware implementation.

Add 3 dB of headroom to the stopband attenuation so that the DDC still meets the specification after
fixed-point quantization. This value was found empirically by using fvtool.

finalSpec = fdesign.decimator(2,'lowpass', ...
 'Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast+3,hbParams.FsOut);
finalFilt = design(finalSpec,'equiripple','SystemObject',true)

finalFilt =

 dsp.FIRDecimator with properties:

 Main
 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [9.3365e-04 0.0013 9.3466e-04 -5.3189e-04 -0.0022 ...]
 Structure: 'Direct form'

 Use get to show all properties

Visualize the overall magnitude response of the DDC.

ddcFilterChain = dsp.FilterCascade(cicFilt,cicGainCorr,compFilt,hbFilt,finalFilt);
ddcPlots.overallResponse = fvtool(ddcFilterChain,'Fs',FsIn,'Legend','off');

 Implement Digital Downconverter for FPGA

1-67

Fixed-Point Conversion

The frequency response of the floating-point DDC filter chain now meets the specification. Next,
quantize each filter stage to use fixed-point types and analyze them to confirm that the filter chain
still meets the specification.

Filter Quantization

This example uses 16-bit coefficients, which are sufficient to meet the specification. Using fewer than
18 bits for the coefficients minimizes the number of DSP blocks that are required for an FPGA
implementation. The input to the DDC filter chain is 16-bit data with 15 fractional bits. The filter
outputs are 18-bit values, which provide extra headroom and precision in the intermediate signals.

For the CIC decimator, choosing the 'Minimum section word lengths' fixed-point data type
option automatically optimizes the internal wordlengths based on the output wordlength and other
CIC parameters.

cicFilt.FixedPointDataType = 'Minimum section word lengths';
cicFilt.OutputWordLength = 18;

Configure the fixed-point properties of the gain correction and FIR-based System objects. The object
uses the default RoundingMethod and OverflowAction property values ('Floor' and 'Wrap'
respectively).

% CIC Gain Correction
cicGainCorr.FullPrecisionOverride = false;
cicGainCorr.CoefficientsDataType = 'Custom';

1 Featured Examples

1-68

cicGainCorr.CustomCoefficientsDataType = numerictype(fi(cicGainCorr.Numerator,1,16));
cicGainCorr.OutputDataType = 'Custom';
cicGainCorr.CustomOutputDataType = numerictype(1,18,16);

% CIC Droop Compensation
compFilt.FullPrecisionOverride = false;
compFilt.CoefficientsDataType = 'Custom';
compFilt.CustomCoefficientsDataType = numerictype([],16,15);
compFilt.ProductDataType = 'Full precision';
compFilt.AccumulatorDataType = 'Full precision';
compFilt.OutputDataType = 'Custom';
compFilt.CustomOutputDataType = numerictype([],18,16);

% Halfband
hbFilt.FullPrecisionOverride = false;
hbFilt.CoefficientsDataType = 'Custom';
hbFilt.CustomCoefficientsDataType = numerictype([],16,15);
hbFilt.ProductDataType = 'Full precision';
hbFilt.AccumulatorDataType = 'Full precision';
hbFilt.OutputDataType = 'Custom';
hbFilt.CustomOutputDataType = numerictype([],18,16);

% FIR
finalFilt.FullPrecisionOverride = false;
finalFilt.CoefficientsDataType = 'Custom';
finalFilt.CustomCoefficientsDataType = numerictype([],16,15);
finalFilt.ProductDataType = 'Full precision';
finalFilt.AccumulatorDataType = 'Full precision';
finalFilt.OutputDataType = 'Custom';
finalFilt.CustomOutputDataType = numerictype([],18,16);

Fixed-Point Analysis

Inspect the quantization effects with fvtool. You can analyze the filters individually or in a cascade.
fvtool shows the quantized and unquantized (reference) responses overlayed. For example, this
figure shows the effect of quantizing the final FIR filter stage.

ddcPlots.quantizedFIR = fvtool(finalFilt, ...
 'Fs',hbParams.FsOut,'arithmetic','fixed');

 Implement Digital Downconverter for FPGA

1-69

Redefine the ddcFilterChain cascade object to include the fixed-point properties of the individual
filters. Then, use fvtool to analyze the entire filter chain and confirm that the quantized DDC still
meets the specification.

ddcFilterChain = dsp.FilterCascade(cicFilt, ...
 cicGainCorr,compFilt,hbFilt,finalFilt);
ddcPlots.quantizedDDCResponse = fvtool(ddcFilterChain, ...
 'Fs',FsIn,'Arithmetic','fixed');

legend(ddcPlots.quantizedDDCResponse, ...
 'DDC filter chain');

1 Featured Examples

1-70

HDL-Optimized Simulink Model

The next step in the design flow is to implement the DDC in Simulink using blocks that support HDL
code generation.

Model Configuration

The model relies on variables in the MATLAB workspace to configure the blocks and settings. It uses
the same filter chain variables defined earlier in the example. Next, define the NCO characteristics
and the input signal. The example uses these characteristics to configure the NCO block.

Specify the desired frequency resolution and calculate the number of accumulator bits that are
required to achieve the desired resolution. Set the desired spurious free dynamic range, and then
define the number of quantized accumulator bits. The NCO uses the quantized output of the
accumulator to address the sine lookup table. Also compute the phase increment that the NCO uses
to generate the specified carrier frequency. The NCO applies phase dither to those accumulator bits
that are removed during quantization.

nco.Fd = 1;
nco.AccWL = nextpow2(FsIn/nco.Fd)+1;
SFDR = 84;
nco.QuantAccWL = ceil((SFDR-12)/6);
nco.PhaseInc = round((-Fc*2^nco.AccWL)/FsIn);
nco.NumDitherBits = nco.AccWL-nco.QuantAccWL;

The input to the DDC comes from the ddcIn variable. For now, assign a dummy value for ddcIn so
that the model can compute its data types. During testing, ddcIn provides input data to the model.

 Implement Digital Downconverter for FPGA

1-71

ddcIn = 0; %#ok<NASGU>

You can create a sample-based signal by setting up the FrameSize to 1, and output each individual
sample as it is received. For a higher input sampling frequency or power reducing consideration, this
design could also realize frame-based processing, and the FrameSize should be modified
accordingly. In this case, we're showing a case for the FrameSize of 4.

FrameSize = 4;

Model Structure

This figure shows the top level of the DDC Simulink model. The model imports the ddcIn variable
from the MATLAB workspace by using a Signal From Workspace block, converts the input signal to
16-bit values, and applies the signal to the DDC. You can generate HDL code from the HDL_DDC
subsystem.

modelName = 'DDCforLTEHDL';
open_system(modelName);
set_param(modelName,'SimulationCommand','Update');
set_param(modelName,'Open','on');

The HDL_DDC subsystem implements the DDC filter. First, the NCO block generates a complex phasor
at the carrier frequency. This signal goes to a mixer that multiplies the phasor with the input signal.
Then, the output of the mixer is passed to the filter chain and decimated to 1.92 Msps.

set_param([modelName '/HDL_DDC'],'Open','on');

NCO Block Parameters

The NCO block in the model is configured with the parameters defined in the nco structure. This
figure shows both tabs of the NCO block parameters dialog.

1 Featured Examples

1-72

CIC Decimation and Gain Correction

The first filter stage is a CIC Decimator that is implemented with a CIC Decimator block. The block
parameters are set to the cicParams structure values. To implement the gain correction, the model
selects the Gain correction parameter. The image shows the block parameters for the CIC
Decimator block.

 Implement Digital Downconverter for FPGA

1-73

The model configures the filters by using the properties of the corresponding System objects. The CIC
compensation, halfband decimation, and final decimation filters operate at effective sample rates that
are lower than the clock rate by factors of 8, 16, and 32, respectively. The model implements these
sample rates by using the valid input signal to indicate which samples are valid at each rate. The
signals in the filter chain all have the same Simulink sample time.

The CIC Compensation, Halfband Decimation, and Final Decimation filters are each implemented by
an FIR Decimator. By setting the Minimum number of cycles between valid input samples
parameter, we can use the invalid cycles between input samples. For example,the spacing between
every input of CIC Compensation Decimator is 8, which equals the decimation factor. So the CIC
Compensation Decimator has the Minimum number of cycles between valid input samples set to
ceil(cicParams.DecimationFactor/FrameSize), which equals 2 cycles. The image shows the
block parameters for the CIC Compensation Decimation block.

1 Featured Examples

1-74

The FIR Decimator block fully reuses the multipliers in time over the number of clock cycles you
specify. For FrameSize is 4, the CIC Compensation Decimation filter with complex input data would
use 4 multipliers. The Halfband Decimation uses 4 multipliers, and the Final Decimation uses 12
multipliers. For FrameSize is 1, since the inputs spacing of CIC Compensation Decimation and
Halfband Decimation are larger than their filter length, those two decimators only require 2
multipliers. And the Final Decimation needs 4 multipliers at that time.

Sinusoid on Carrier Test and Verification

To test the DDC, modulate a 40 kHz sinusoid onto the carrier frequency and pass the modulated sine
wave through the DDC. Then, measure the spurious- free dynamic range (SFDR) of the resulting tone
and the SFDR of the NCO output. Plot the SFDR of the NCO and the fixed-point DDC output.

% Initialize random seed before executing any simulations.
rng(0);

% Generate a 40 kHz test tone, modulated onto the carrier.
ddcIn = DDCTestUtils.GenerateTestTone(40e3,Fc);

% Demodulate the test signal with the floating-point DDC.
ddcOut = DDCTestUtils.DownConvert(ddcIn,FsIn,Fc,ddcFilterChain);
release(ddcFilterChain);

% Demodulate the test signal by running the Simulink model.
out = sim(modelName);

 Implement Digital Downconverter for FPGA

1-75

% Measure the SFDR of the NCO, floating-point DDC outputs, and fixed-point
% DDC outputs.
results.sfdrNCO = sfdr(real(out.ncoOut),FsIn);
results.sfdrFloatDDC = sfdr(real(ddcOut),FsOut);
results.sfdrFixedDDC = sfdr(real(out.ddcFixedOut),FsOut);

disp('SFDR Measurements');
disp([' Floating-point DDC SFDR: ',num2str(results.sfdrFloatDDC) ' dB']);
disp([' Fixed-point NCO SFDR: ',num2str(results.sfdrNCO) ' dB']);
disp([' Optimized fixed-point DDC SFDR: ',num2str(results.sfdrFixedDDC) ' dB']);
fprintf(newline);

% Plot the SFDR of the NCO and fixed-point DDC outputs.
ddcPlots.ncoOutSDFR = figure;
sfdr(real(out.ncoOut),FsIn);

ddcPlots.OptddcOutSFDR = figure;
sfdr(real(out.ddcFixedOut),FsOut);

SFDR Measurements
 Floating-point DDC SFDR: 291.4188 dB
 Fixed-point NCO SFDR: 83.0306 dB
 Optimized fixed-point DDC SFDR: 110.386 dB

1 Featured Examples

1-76

LTE Signal Test

You can use an LTE test signal to perform more rigorous testing of the DDC. Generate a standard-
compliant LTE waveform by using LTE Toolbox™ functions. Then, downconvert the waveform with the
DDC model. Use LTE Toolbox functions to measure the error vector magnitude (EVM) of the resulting
signals.

rng(0);
% Execute this test only if you have the LTE Toolbox product.
if license('test','LTE_Toolbox')

 % Generate a modulated LTE test signal by using the LTE Toolbox functions.
 [ddcIn,sigInfo] = DDCTestUtils.GenerateLTETestSignal(Fc);

 % Downconvert the signal with the floating-point DDC.
 ddcOut = DDCTestUtils.DownConvert(ddcIn,FsIn,Fc,ddcFilterChain);
 release(ddcFilterChain);

 % Downconvert the signal with the Simulink model, then measure and plot the
 % EVM of the floating-point and fixed-point results. Pad the input with zeros
 % to represent propagation latency and return the complete result.
 ddcIn = [ddcIn;zeros(2480*FrameSize,1)];
 out = sim(modelName);

 results.evmFloat = DDCTestUtils.MeasureEVM(sigInfo,ddcOut);
 results.evmFixed = DDCTestUtils.MeasureEVM(sigInfo,out.ddcFixedOut(1:length(ddcOut)));

 Implement Digital Downconverter for FPGA

1-77

 disp('LTE Error Vector Magnitude (EVM) Measurements');
 disp([' Floating-point DDC RMS EVM: ' num2str(results.evmFloat.RMS*100,3) '%']);
 disp([' Floating-point DDC Peak EVM: ' num2str(results.evmFloat.Peak*100,3) '%']);
 disp([' Fixed-point DDC RMS EVM: ' num2str(results.evmFixed.RMS*100,3) '%']);
 disp([' Fixed-point DDC Peak EVM: ' num2str(results.evmFixed.Peak*100,3) '%']);
 fprintf(newline);

end

LTE Error Vector Magnitude (EVM) Measurements
 Floating-point DDC RMS EVM: 0.633%
 Floating-point DDC Peak EVM: 2.44%
 Fixed-point DDC RMS EVM: 0.731%
 Fixed-point DDC Peak EVM: 2.69%

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example you must have the HDL Coder™ product. Use the
makehdl and makehdltb commands to generate HDL code and an HDL test bench for the HDL_DDC
subsystem. The DDC was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board. The table
shows the post place-and-route resource utilization results. The design met timing with a clock
frequency of 331 MHz.

T = table(...
 categorical({'LUT'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}),...
 categorical({'4341'; '383'; '8248'; '2.0'; '36'}),...
 'VariableNames',{'Resource','Usage'})

T =

 5x2 table

 Resource Usage
 ________ _____

 LUT 4341
 LUTRAM 383
 FF 8248
 BRAM 2.0
 DSP 36

See Also
CIC Decimator | FIR Decimator | NCO

Related Examples
• “Implement Digital Upconverter for FPGA” on page 1-79

1 Featured Examples

1-78

Implement Digital Upconverter for FPGA

This example shows how to design a digital upconverter (DUC) for radio communication applications
such as LTE, and generate HDL code.

Introduction

DUCs are widely used in digital communication transmitters to convert baseband signals to radio
frequency (RF) or intermediate frequency (IF) signals. The DUC operation increases the sample rate
of the signal and shifts it to a higher frequency to facilitate subsequent processing stages. The DUC
in this example performs sample rate conversion using a four-stage filter chain followed by complex
frequency translation. The example starts by designing the DUC with DSP System Toolbox™ functions
in floating point. Then, each stage is converted to fixed point, and used in a Simulink® model that
generates synthesizable HDL code. The example uses these two test signals to demonstrate and
verify the DUC operation:

• A sinusoid that is modulated onto a 32 MHz IF carrier.
• An LTE downlink signal with a bandwidth of 1.4 MHz, modulated onto a 32 MHz IF carrier.

The example downconverts the outputs of the floating-point and fixed-point DUCs, and compares the
signal quality of the two outputs.

Finally, the example presents an implementation of the filter chain for FPGAs, and synthesis results.

This example uses DUCTestUtils, a helper class that contains functions for generating stimulus and
analyzing the DUC output. For more information, see the DUCTestUtils.m file.

DUC Structure

The DUC consists of an interpolating filter chain, numerically controlled oscillator (NCO), and mixer.
The filter chain consists of a lowpass interpolator, halfband interpolator, CIC compensation
interpolator (FIR), CIC interpolator, and CIC gain correction.

The overall response of the filter chain is equivalent to that of a single interpolation filter with the
same specification. However, splitting the filter into multiple interpolation stages results in a more
efficient design that uses fewer hardware resources.

The first lowpass interpolator implements the precise Fpass and Fstop characteristics of the DUC.
The halfband filter is an intermediate interpolator. The lower sampling rates at the beginning of the
chain mean the earlier filters can optimize resource use by sharing multipliers. The CIC
compensation interpolator improves the spectral response by compensating for the later CIC droop
while interpolating by two. The CIC interpolator provides a large interpolation factor, which meets
the filter chain upsampling requirements.

This figure shows a block diagram of the DUC.

 Implement Digital Upconverter for FPGA

1-79

The sample rate of the input to the DUC is 1.92 Msps, and the output sample rate is 122.88 Msps.
These rates give an overall interpolation factor of 64. LTE receivers use 1.92 Msps as the typical
sampling rate for cell search and master information block (MIB) recovery. The DUC filters are
designed to suit this application. The DUC is optimized to run at a clock rate of 122.88 MHz.

DUC Design

This section explains how to design the DUC using floating-point operations and filter-design
functions in MATLAB®. The DUC object enables you to specify several characteristics that define the
response of the cascade for the four filters, including passband and stopband frequencies, passband
ripple, and stopband attenuation.

DUC Parameters

This example designs the DUC filter characteristics to meet these desired response values for the
given input sampling rate and carrier frequency.

FsIn = 1.92e6; % Sampling rate at input to DUC
FsOut = 122.88; % Sampling rate at the output
Fc = 32e6; % Carrier frequency
Fpass = 540e3; % Passband frequency, equivalent to 36*15kHz LTE subcarriers
Fstop = 700e3; % Stopband frequency
Ap = 0.1; % Passband ripple
Ast = 60; % Stopband attenuation

First Lowpass Interpolator

This filter interpolates by two, and operates at the lowest sampling rate of the filter chain. The low
sample rate means this filter can use resource sharing for an efficient hardware implementation.

lowpassParams.FsIn = FsIn;
lowpassParams.InterpolationFactor = 2;
lowpassParams.FsOut = FsIn*lowpassParams.InterpolationFactor;

lowpassSpec = fdesign.interpolator(lowpassParams.InterpolationFactor, ...
 'lowpass','Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast,lowpassParams.FsOut);
lowpassFilt = design(lowpassSpec,'SystemObject',true)

lowpassFilt =

 dsp.FIRInterpolator with properties:

 InterpolationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0.0020 0.0021 4.9115e-04 -0.0027 -0.0050 ...]

1 Featured Examples

1-80

 Use get to show all properties

Display the magnitude response of the lowpass filter without gain correction.

ducPlots.lowpass = fvtool(lowpassFilt,'Fs',FsIn*2,'Legend','off');

Second Halfband Interpolator

The halfband filter provides efficient interpolation by two. Halfband filters are efficient for hardware
because approximately half of their coefficients are equal to zero, and those multipliers are excluded
from the hardware implementation.

 hbParams.FsIn = lowpassParams.FsOut;
 hbParams.InterpolationFactor = 2;
 hbParams.FsOut = lowpassParams.FsOut*hbParams.InterpolationFactor;
 hbParams.TransitionWidth = hbParams.FsIn - 2*Fstop;
 hbParams.StopbandAttenuation = Ast;

 hbSpec = fdesign.interpolator(hbParams.InterpolationFactor,'halfband', ...
 'TW,Ast', ...
 hbParams.TransitionWidth, ...
 hbParams.StopbandAttenuation, ...
 hbParams.FsOut);

hbFilt = design(hbSpec,'SystemObject',true)

 Implement Digital Upconverter for FPGA

1-81

hbFilt =

 dsp.FIRInterpolator with properties:

 InterpolationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0.0178 0 -0.1129 0 0.5953 1 0.5953 0 -0.1129 0 ...]

 Use get to show all properties

Visualize the magnitude response of the halfband interpolation.

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt);
ducPlots.hbFilt = fvtool(lowpassFilt,hbFilt,ducFilterChain, ...
 'Fs',[FsIn*2,FsIn*4,FsIn*4]);

legend(ducPlots.hbFilt, ...
 'Lowpass Interpolator', ...
 'Halfband Interpolator', ...
 'Lowpass+Halfband');

CIC Compensation Interpolator

Because the magnitude response of the last CIC filter has a significant droop within the passband
region, the example uses an FIR-based droop compensation filter to flatten the passband response.

1 Featured Examples

1-82

The droop compensator has the same properties as the CIC interpolator. This filter implements
interpolation by a factor of two, so you must also specify bandlimiting characteristics for the filter.
Also, specify the CIC interpolator properties that are used for this compensation filter as well as the
later CIC interpolator.

Use the design function to return a filter System object with the specified characteristics.

compParams.FsIn = hbParams.FsOut;
compParams.InterpolationFactor = 2; % CIC compensation interpolation factor
compParams.FsOut = compParams.FsIn*compParams.InterpolationFactor; % New sampling rate
compParams.Fpass = 1/2*compParams.FsIn + Fpass; % CIC compensation passband frequency
compParams.Fstop = 1/2*compParams.FsIn + 1/4*compParams.FsIn; % CIC compensation stopband frequency
compParams.Ap = Ap; % Same passband ripple as overall filter
compParams.Ast = Ast; % Same stopband attenuation as overall filter
N = 31; % 32 tap filter to take advantage of 16 cycles between input

cicParams.InterpolationFactor = 8; % CIC interpolation factor
cicParams.DifferentialDelay = 1; % CIC interpolator differential delay
cicParams.NumSections = 3; % CIC interpolator number of integrator and comb sections

compSpec = fdesign.interpolator(compParams.InterpolationFactor,'ciccomp', ...
 cicParams.DifferentialDelay, ...
 cicParams.NumSections, ...
 cicParams.InterpolationFactor, ...
 'N,Fp,Ap,Ast', ...
 N,compParams.Fpass,compParams.Ap,compParams.Ast, ...
 compParams.FsOut);
compFilt = design(compSpec,'SystemObject',true)

compFilt =

 dsp.FIRInterpolator with properties:

 InterpolationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [-6.9876e-04 -0.0099 0.0038 0.0134 -0.0255 ...]

 Use get to show all properties

Plot the response of the CIC compensation interpolator.

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt,compFilt);
ducPlots.cicComp = fvtool(lowpassFilt,hbFilt,compFilt,ducFilterChain, ...
 'Fs',[FsIn*2,FsIn*4,FsIn*8,FsIn*8]);

legend(ducPlots.cicComp, ...
 'Lowpass Interpolator', ...
 'Halfband Interpolator', ...
 'CIC Comp Interpolator', ...
 'Lowpass+Halfband+CIC Comp');

 Implement Digital Upconverter for FPGA

1-83

CIC Interpolator

The last filter stage is implemented as a CIC interpolator because of this type of filter's ability to
efficiently implement a large decimation factor. The response of a CIC filter is similar to a cascade of
moving average filters, but a CIC filter uses no multiplication or division. As a result, the CIC filter
has a large DC gain.

cicParams.FsIn = compParams.FsOut;
cicParams.FsOut = cicParams.FsIn*cicParams.InterpolationFactor;

cicFilt = dsp.CICInterpolator(cicParams.InterpolationFactor, ...
 cicParams.DifferentialDelay,cicParams.NumSections) %#ok<*NOPTS>

cicFilt =

 dsp.CICInterpolator with properties:

 InterpolationFactor: 8
 DifferentialDelay: 1
 NumSections: 3
 FixedPointDataType: 'Full precision'

Visualize the magnitude response of the CIC interpolation. CIC filters use fixed-point arithmetic
internally, so fvtool plots both the quantized and unquantized responses.

1 Featured Examples

1-84

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt,compFilt,cicFilt);
ducPlots.cicInter = fvtool(lowpassFilt,hbFilt,compFilt,cicFilt,ducFilterChain, ...
 'Fs',[FsIn*2,FsIn*4,FsIn*8,FsIn*64,FsIn*64]);

legend(ducPlots.cicInter, ...
 'First Halfband Interpolator', ...
 'Second Halfband Interpolator', ...
 'CIC Compensation Interpolator', ...
 'CIC Interpolator',...
 'Overall Response');

Every interpolator has a DC gain that is determined by its interpolation factor. The CIC interpolator
has a larger gain than other filters. Call the gain function to get the gain factor of this filter.

Because the CIC gain is a power of two, a hardware implementation can easily correct for the gain
factor by using a shift operation. For analysis purposes, the example represents the gain correction
by using a one-tap dsp.FIRFilter System object. Combine the filter chain and the gain correction
filter into a dsp.FilterCascade System object.

cicGain = gain(cicFilt)
Gain = lowpassParams.InterpolationFactor* ...
 hbParams.InterpolationFactor*compParams.InterpolationFactor* ...
 cicParams.InterpolationFactor*cicGain;
GainCorr = dsp.FIRFilter('Numerator',1/Gain)

cicGain =

 Implement Digital Upconverter for FPGA

1-85

 64

GainCorr =

 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: 2.4414e-04
 InitialConditions: 0

 Use get to show all properties

Plot the overall chain response with and without gain correction.

ducPlots.overallResponse = fvtool(ducFilterChain,dsp.FilterCascade(ducFilterChain,GainCorr), ...
 'Fs',[FsIn*64,FsIn*64]);
legend(ducPlots.overallResponse, ...
 'Overall Response: No Gain Correction',...
 'Overall Response: Gain Correction');

1 Featured Examples

1-86

Fixed-Point Conversion

The frequency response of the floating-point DUC filter chain now meets the specification. Next,
quantize each filter stage to use fixed-point types and analyze them to confirm that the filter chain
still meets the specification.

Filter Quantization

This example uses 16-bit coefficients, which are sufficient to meet the specification. Using fewer than
18 bits for the coefficients minimizes the number of DSP blocks that are required for an FPGA
implementation. The input to the DUC filter chain is 16-bit data with 15 fractional bits. The filter
outputs are 18-bit values, which provide extra headroom and precision in the intermediate signals.

% First Lowpass Interpolator
lowpassFilt.FullPrecisionOverride = false;
lowpassFilt.CoefficientsDataType = 'Custom';
lowpassFilt.CustomCoefficientsDataType = numerictype([],16,15);
lowpassFilt.ProductDataType = 'Full precision';
lowpassFilt.AccumulatorDataType = 'Full precision';
lowpassFilt.OutputDataType = 'Custom';
lowpassFilt.CustomOutputDataType = numerictype([],18,14);

% Halfband
hbFilt.FullPrecisionOverride = false;
hbFilt.CoefficientsDataType = 'Custom';
hbFilt.CustomCoefficientsDataType = numerictype([],16,14);
hbFilt.ProductDataType = 'Full precision';
hbFilt.AccumulatorDataType = 'Full precision';
hbFilt.OutputDataType = 'Custom';
hbFilt.CustomOutputDataType = numerictype([],18,14);

% CIC Compensation Interpolator
compFilt.FullPrecisionOverride = false;
compFilt.CoefficientsDataType = 'Custom';
compFilt.CustomCoefficientsDataType = numerictype([],16,14);
compFilt.ProductDataType = 'Full precision';
compFilt.AccumulatorDataType = 'Full precision';
compFilt.OutputDataType = 'Custom';
compFilt.CustomOutputDataType = numerictype([],18,14);

For the CIC interpolator, choosing the 'Minimum section word lengths' fixed-point data type
option automatically optimizes the internal wordlengths based on the output wordlength and other
CIC parameters.

cicFilt.FixedPointDataType = 'Minimum section word lengths';
cicFilt.OutputWordLength = 18;

Configure the fixed-point properties of the gain correction and FIR-based System objects. The object
uses the default RoundingMethod and OverflowAction property values ('Floor' and 'Wrap'
respectively).

% CIC Gain Correction
GainCorr.FullPrecisionOverride = false;
GainCorr.CoefficientsDataType = 'Custom';
GainCorr.CustomCoefficientsDataType = numerictype(fi(GainCorr.Numerator,1,16));
GainCorr.OutputDataType = 'Custom';
GainCorr.CustomOutputDataType = numerictype(1,18,14);

 Implement Digital Upconverter for FPGA

1-87

Fixed-Point Analysis

Inspect the quantization effects with fvtool. You can analyze the filters individually or in a cascade.
fvtool shows the quantized and unquantized (reference) responses overlayed. For example, this
figure shows the effect of quantizing the first FIR filter stage.

ducPlots.quantizedFIR = fvtool(lowpassFilt,'Fs',lowpassParams.FsIn*2,'arithmetic','fixed');

legend(ducPlots.quantizedFIR, ...
 'Lowpass Interpolator');

Redefine the ducFilterChain cascade object to include the fixed-point properties of the individual
filters. Then use fvtool to analyze the entire filter chain and confirm that the quantized DUC still
meets the specification.

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt,compFilt,cicFilt,GainCorr);
ducPlots.quantizedDUCResponse = fvtool(ducFilterChain, ...
 'Fs',FsIn*64,'Arithmetic','fixed');

legend(ducPlots.quantizedDUCResponse, ...
 'DUC filter chain');

1 Featured Examples

1-88

HDL-Optimized Simulink Model

The next step in the design flow is to implement the DUC in Simulink using blocks that support HDL
code generation.

Model Configuration

The model relies on variables in the MATLAB workspace to configure the blocks and settings. The
filter blocks are configured by using the filter chain objects defined earlier in the example.

The input to the DUC comes from the ducIn variable. For now, assign a dummy value for ducIn so
that the model can compute its data types. During testing, ducIn provides input data to the model.

ducIn = 0; %#ok<NASGU>

The outputFrame parameter sets the frame size of the output based on the DAC requirement.
outputFrame affects the input vector size and valid sample spacing, and it should be a power of two.

outputFrame = 4;

Model Structure

This figure shows the top level of the DUC Simulink model. The model imports the ducIn variable
from the MATLAB workspace by using a Signal From Workspace block, converts the signal to 16-bit
values, and applies the signal to the DUC. The design is single rate, and uses a valid signal to convey
the rate change from block to block. To simulate the input running 64 times slower than the clock, it
is upsampled by 64 with zero insertion. You can generate HDL code from the HDL_DUC subsystem.

 Implement Digital Upconverter for FPGA

1-89

modelName = 'DUCforLTEHDL';
open_system(modelName);
set_param(modelName,'Open','on');

The DUC implementation is inside the HDL_DUC subsystem.

set_param([modelName '/HDL_DUC'],'Open','on');

Filter Block Parameters

All of the filters are configured to inherit the coefficients of the corresponding System objects. Each
block also has a "Minimum number of cycles between valid input" parameter that is used to optimize
the resulting HDL code. The lowpass, halfband, and CIC compensation filters have cycles between
valid inputs that can be used for resource sharing - 64, 32, and 16 cycles, respectively.

For example, because the sample rate of the input to the Lowpass Interpolation block is Fclk/64, 64
clock cycles are available to process each input sample.

The first filter interpolates by 2. Each polyphase branch is implemented by a separate FIR Filter.
Because the number of cycles between valid input samples is greater than 1, each FIR is
implemented using the partly serial systolic architecture. The filter has 69 coefficients in total, and
after polyphase decomposition each branch has 35 coefficients. There are 64 cycles available for
sharing, so each branch is implemented with a fully serial FIR. With complex input, each branch uses
2 multipliers, for a total of 4 multipliers in this filter.

1 Featured Examples

1-90

The second filter is a halfband interpolator. This filter can also take advantage of cycles between valid
input to perform resource sharing. These cycles are available because each interpolator output has
idle cycles between valid samples. The first filter has 64 cycles and interpolates by 2. Therefore, it
will output data every 32 cycles. The second filter has 6 coefficients per polyphase branch and so it
can be implemented as a fully serial FIR. In this filter, the second branch only contains one non-zero
coefficient, and it is a power of 2. The FIR Interpolator block implements this branch as a shift rather
than a multiplier. The second filter then has only 2 multipliers.

The third filter is a CIC compensation filter which interpolates by 2. It has 32 coefficients in total,
which we specified when designing the filter. The filter is implemented using 2 fully serial complex
FIRs, giving a total of 4 multipliers for this filter.

Gain Correction

The gain correction divides the output by 4096, which is equivalent to shifting right by 12 bits.
Because the input and output signals of the gain correction each are expressed with 18 bits, the
model implements this shift by reinterpreting the data type of the output signal. The Conversion
block reinterprets the 12-bit number to have 20 fractional bits rather than 8 fractional bits.

set_param([modelName '/HDL_DUC/Gain Correction'],'Open','on');

 Implement Digital Upconverter for FPGA

1-91

NCO Block Parameters

The NCO block generates a complex phasor at the carrier frequency. This signal goes to a mixer that
multiplies the phasor with the output signal. The output of the mixer is sampled at 122.88 Msps.

Specify the desired frequency resolution, then calculate the number of accumulator bits required to
achieve the desired resolution, and define the number of quantized accumulator bits. The NCO uses
the quantized output of the accumulator to address the sine lookup table. Also compute the phase
increment the NCO must use to generate the specified carrier frequency. The NCO applies phase
dither to the accumulator bits that are removed during quantization.

nco.Fd = 1;
nco.AccWL = nextpow2(FsIn*64/nco.Fd) + 1;
nco.QuantAccWL = 12;
nco.PhaseInc = round((Fc*2^nco.AccWL)/(FsIn*64));
nco.NumDitherBits = nco.AccWL-nco.QuantAccWL;

The NCO block in the model is configured with the parameters defined in the nco structure. This
figure shows the NCO block parameters dialog.

1 Featured Examples

1-92

Mixer

The Mixer subsystem performs a complex multiply of the filter output and NCO.

set_param([modelName '/HDL_DUC/Mixer'],'Open','on');

 Implement Digital Upconverter for FPGA

1-93

To map the mixer to DSP slices on FPGA, the mixer is pipelined and the blocks have specific settings.
The delay blocks in the mixer are configured to have reset turned off as shown in the image. There
are 2 pipeline stages at the input, 1 between the multiplier and adder, and another post-adder. Also,
the multipliers and adders are configured to use full-precision output. These blocks use Floor
rounding method, and the saturate on overflow logic is disabled.

Sinusoid on Carrier Test

To test the DUC, pass a 40kHz sinusoid through the DUC and modulate the output signal onto the
carrier frequency. Demodulate and resample the signal. Then measure the spurious free dynamic
range (SFDR) of the resulting tone and the SFDR of the NCO output.

% Initialize random seed before executing any simulations.
rng(0);

% Generate a 40kHz test tone.

1 Featured Examples

1-94

ducIn = DUCTestUtils.GenerateTestTone(40e3);

% Upconvert the test signal with the floating-point DUC.
ducTx = DUCTestUtils.UpConvert(ducIn,FsIn*64,Fc,ducFilterChain);
release(ducFilterChain);

% Down convert the output of DUC.
ducRx = DUCTestUtils.DownConvert(ducTx,FsIn*64,Fc);

% Upconvert the test signal by running the fixed-point Simulink model.
simOut = sim(modelName);

% Downconvert the output of DUC.
simTx = simOut.ducOut;
simRx = DUCTestUtils.DownConvert(simTx,FsIn*64,Fc);

% Measure the SFDR of the NCO, floating point DUC, and fixed-point DUC outputs.
results.sfdrNCO = sfdr(real(simOut.ncoOut),FsIn);
results.sfdrFloatDUC = sfdr(real(ducRx),FsIn);
results.sfdrFixedDUC = sfdr(real(simRx),FsIn);

disp('SFDR Measurements');
disp([' Floating-point DUC SFDR: ',num2str(results.sfdrFloatDUC) ' dB']);
disp([' Fixed-point NCO SFDR: ',num2str(results.sfdrNCO) ' dB']);
disp([' Fixed-point DUC SFDR: ',num2str(results.sfdrFixedDUC) ' dB']);
fprintf(newline);

% Plot the SFDR of the NCO and fixed-point DUC outputs.
ducPlots.ncoOutSDFR = figure;
sfdr(real(simOut.ncoOut),FsIn);

ducPlots.ducOutSDFR = figure;
sfdr(real(simRx),FsIn);

SFDR Measurements
 Floating-point DUC SFDR: 287.9814 dB
 Fixed-point NCO SFDR: 86.2454 dB
 Fixed-point DUC SFDR: 89.5756 dB

 Implement Digital Upconverter for FPGA

1-95

1 Featured Examples

1-96

LTE Signal Test

You can use an LTE test signal to perform more rigorous testing of the DUC. Generate a standard-
compliant LTE waveform by using LTE Toolbox™ functions. Then, upconvert the waveform with the
DUC model. Use LTE Toolbox functions to measure the error vector magnitude (EVM) of the resulting
signals.

rng(0);
% Execute this test only if you have the LTE Toolbox product.
if license('test','LTE_Toolbox')

 % Generate an LTE test signal by using LTE Toolbox functions.
 [ducIn, sigInfo] = DUCTestUtils.GenerateLTETestSignal();

 % Upconvert the signal with the floating-point DUC and modulate onto carrier.
 ducTx = DUCTestUtils.UpConvert(ducIn,FsIn*64,Fc,ducFilterChain);
 release(ducFilterChain);

 % Add noise to the transmit signal.
 ducTxAddNoise = DUCTestUtils.AddNoise(ducTx);

 % Downconvert the received signal.
 ducRx = DUCTestUtils.DownConvert(ducTxAddNoise,FsIn*64,Fc);

 % Upconvert the signal by using the Simulink model.
 simOut = sim(modelName);

 Implement Digital Upconverter for FPGA

1-97

 % Add noise to the transmit signal.
 simTx = simOut.ducOut;
 simTxAddNoise = DUCTestUtils.AddNoise(simTx);

 % Downconvert the received signal.
 simRx = DUCTestUtils.DownConvert(simTxAddNoise,FsIn*64,Fc);

 results.evmFloat = DUCTestUtils.MeasureEVM(sigInfo,ducRx);
 results.evmFixed = DUCTestUtils.MeasureEVM(sigInfo,simRx);

 disp('LTE EVM Measurements');
 disp([' Floating-point DUC RMS EVM: ' num2str(results.evmFloat.RMS*100,3) '%']);
 disp([' Floating-point DUC Peak EVM: ' num2str(results.evmFloat.Peak*100,3) '%']);
 disp([' Fixed-point DUC RMS EVM: ' num2str(results.evmFixed.RMS*100,3) '%']);
 disp([' Fixed-point DUC Peak EVM: ' num2str(results.evmFixed.Peak*100,3) '%']);
 fprintf(newline);

end

LTE EVM Measurements
 Floating-point DUC RMS EVM: 0.813%
 Floating-point DUC Peak EVM: 2.53%
 Fixed-point DUC RMS EVM: 0.816%
 Fixed-point DUC Peak EVM: 2.82%

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example you must have the HDL Coder™ product. Use the
makehdl and makehdltb commands to generate HDL code and an HDL test bench for the HDL_DUC
subsystem. The DUC was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board. The table
shows the post place-and-route resource utilization results for outputFrame of size 4. The design met
timing with a clock frequency of 335 MHz.

T = table(...
 categorical({'LUT'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}),...
 categorical({'4708'; '654'; '6849'; '2'; '32'}),...
 'VariableNames',{'Resource','Usage'})

T =

 5x2 table

 Resource Usage
 ________ _____

 LUT 4708
 LUTRAM 654
 FF 6849
 BRAM 2
 DSP 32

See Also
FIR Interpolator | CIC Interpolator | NCO

1 Featured Examples

1-98

Related Examples
• “Implement Digital Downconverter for FPGA” on page 1-61

 Implement Digital Upconverter for FPGA

1-99

HDL Optimized System Design

2

FIR Filter Architectures for FPGAs and ASICs
The Discrete FIR Filter, FIR Decimator, FIR Interpolator, Farrow Rate Converter, Channelizer, and
Channel Synthesizer blocks all use the same FIR filter architectures to implement their algorithms.

These blocks provide filter implementations that make trade-offs between resources and throughput.
The filter implementations also consider vendor-specific hardware details of the DSP blocks when
adding pipeline registers to the architecture. These differences in pipeline register locations help fit
the filter design to the DSP blocks on the FPGA. For a filter implementation that matches multipliers,
pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

The filter implementations remove multipliers for zero-valued coefficients, such as in half-band filters
and Hilbert transforms. When you use scalar input data, the filters share multipliers for symmetric
and antisymmetric coefficients. Frame-based filters do not support symmetry optimization.

The FIR filter implementations implement efficient complex multiplier architectures and support
frame based input by using polyphase filters that share hardware resources across subfilters .

The architecture diagrams on this page assume a transfer function that has L coefficients (before
optimizations that share multipliers for symmetric or antisymmetric or remove multipliers for zero-
valued coefficients). N represents the number of cycles between valid input samples.

Filter Structure Blocks Settings
“Fully Parallel Systolic Architecture” on
page 2-6

• Discrete FIR Filter
• Farrow Rate Converter
• Channelizer
• Channel Synthesizer
• FIR Decimator
• FIR Interpolator

• For Discrete FIR Filter,
Farrow Rate Converter,
Channelizer, and
Channel Synthesizer —
Set Filter structure to
Direct form
systolic.

• For FIR Decimator and
FIR Interpolator — Set
Filter structure to
Direct form
systolic and
Number of Cycles to
1.

“Fully Parallel Transposed Architecture” on
page 2-6

• Discrete FIR Filter
• Farrow Rate Converter
• Channelizer
• Channel Synthesizer
• FIR Decimator
• FIR Interpolator

Set Filter structure to
Direct form
transposed.

2 HDL Optimized System Design

2-2

Filter Structure Blocks Settings
“Partly Serial Systolic Architecture (1 < N
< L)” on page 2-7

• Discrete FIR Filter
• Farrow Rate Converter
• FIR Decimator
• FIR Interpolator

• For Discrete FIR Filter
— Set Filter structure
to Partly serial
systolic and specify a
serialization factor by
either cycles or
multipliers that results
in 1<N < L.

• For Farrow Rate
Converter, FIR
Decimator, and FIR
Interpolator — Set
Filter structure to
Direct form
systolic and
Minimum number of
cycles between valid
input samples to a
value greater than 1 but
less than L.

“Fully Serial Systolic Architecture (N ≥ L)”
on page 2-8

• Discrete FIR Filter
• Farrow Rate Converter
• FIR Decimator
• FIR Interpolator

• For Discrete FIR Filter
— Set Filter structure
to Partly serial
systolic and specify a
serialization factor by
cycles such that N ≥ L,
or set the Number of
multipliers to 1.

• For Farrow Rate
Converter, FIR
Decimator, and FIR
Interpolator — Set
Filter structure to
Direct form
systolic and
Minimum number of
cycles between valid
input samples to a
value greater than L.

Complex Multipliers
If either data or coefficients are complex but not both, the filter blocks implement one filter to
calculate the real output and a second filter to calculate the imaginary part. This implementation
results in two multipliers for each filter tap.

When both the data and coefficients are complex, the block implements three filters in parallel. The
diagram shows the filter implementation for complex input data X = Xr+i×Xi and complex coefficients
W = Wr+i×Wi.

 FIR Filter Architectures for FPGAs and ASICs

2-3

When you specify coefficients from a parameter, Wr + Wi and Wr-Wi are pre-calculated, so this
implementation uses 3 DSP blocks for each filter tap, plus the input adder and two output adders. The
input to each filter tap multiplier grows by one bit.

When you use programmable coefficients, the filter uses 2 more adders for each filter tap. These
adders calculate the coefficients Wr + Wi and Wr-Wi.

2 HDL Optimized System Design

2-4

Frame-Based Input Data
The Discrete FIR Filter, FIR Decimator, FIR Interpolator, Channelizer, and Channel Synthesizer blocks
accept frame-based input data to support gigasamples-per-second throughput. When you apply
frame-based input data, the FIR filter implements a polyphase decomposition of your filter
coefficients into V subfilters, where V is the size of the input vector. The frame-based filter increases
throughput and uses more hardware resources than the scalar-input case. Frame-based filters do not
implement symmetry optimization.

For a filter with a 1-by-2 input vector, [Y0 Y1], the diagram shows the polyphase decomposition into
two subfilters that implement this equation.

Y0(z) = X0(z)H0(z) + z−1X1(z)H1(z)
Y1(z) = X0(z)H1(z) + X1(z)H0(z)

Each subfilter takes scalar input and is implemented with the architecture you selected, either
Direct form systolic or Direct form transposed. If the subfilters have different latencies
due to different numbers of coefficients, or zero-value coefficient optimization, then the
implementation includes internal delays to align the output samples. You cannot use frame-based
input with the serial systolic architecture.

When you use frame-based input with programmable coefficients, the output may not match sample-
for-sample with the output in scalar mode. This difference is because of the internal timing of

 FIR Filter Architectures for FPGAs and ASICs

2-5

applying each sample in the input vector to the subfilters. Changes in the input coefficients effectively
occur at different individual input samples than they do in scalar mode.

Fully Parallel Systolic Architecture
This filter architecture is a fully parallel systolic architecture with optimizations for symmetry or anti-
symmetry and zero-valued coefficients. The latency depends on the coefficient symmetry and is
displayed on the block icon.

When symmetric pairs of coefficients have equal absolute values, they share one DSP block. This pair-
sharing enables the implementation to use the pre-adder in Xilinx® and Intel® DSP blocks. The top
half of the diagram shows a symmetric filter without the pair coefficient optimization. The bottom half
of the diagram shows the architecture using the pair coefficient optimization.

Fully Parallel Transposed Architecture
The fully parallel transposed architecture minimizes multipliers by sharing multipliers for any two or
more coefficients that have equal absolute values. It also removes multipliers for zero-valued
coefficients. The latency of the filter is six cycles when you use scalar input. This latency does not
change with coefficient values.

The top half of the diagram shows the theoretical architecture for a partly-symmetric filter without
the equal-absolute-value coefficient optimization. The bottom half of the diagram shows the
transposed architecture as implemented using the equal-value coefficient optimization. If the
coefficients are antisymmetric, the output adder becomes a subtraction.

2 HDL Optimized System Design

2-6

Partly Serial Systolic Architecture (1 < N < L)
The partly serial implementation uses M = ceil(L/N) systolic cells. Each cell consists of a delay
line, coefficient lookup table, and DSP (multiply-add) block. The coefficients are spread across the M
lookup tables. The computation performed by each DSP block is serialized. Input samples to the block
must be scalar and at least N cycles apart. The latency of the block is M + ceil(L/M) + 5.

If all the coefficients in the lookup table for a multiplier are zeros or powers of two, the
implementation does not include that multiplier. The powers of two multiplications are implemented
as shifts.

 FIR Filter Architectures for FPGAs and ASICs

2-7

The block implements a RAM-based delay line that uses fewer resources than a register-based
implementation. Uninitialized RAM locations can result in X values at the start of your HDL
simulation. You can avoid X values by initializing the RAM from your test bench, or by enabling the
Initialize all RAM blocks Configuration Parameter. This parameter sets the RAM locations to0 for
simulation and is ignored by synthesis tools.

Fully Serial Systolic Architecture (N ≥ L)
When you choose a serialization factor such that N ≥ L, the block implements a fully serial systolic
architecture. For real coefficients and real input, the filter uses a single DSP (multiply-add) block with
a delay line and a lookup table for all L coefficients. Input samples must be at least N cycles apart.
The latency of the filter is L + 5.

See Also

Related Examples
• “Fully Parallel Systolic FIR Filter Implementation” on page 3-5
• “Partly Serial Systolic FIR Filter Implementation” on page 3-9

2 HDL Optimized System Design

2-8

High-Throughput HDL Algorithms
DSP HDL Toolbox™ provides blocks to implement high-bandwidth applications such as radar, SIGINT,
and 5G FR2 wireless. To meet their bandwidth requirements, these applications need to process
incoming data as multiple samples in parallel, or frame-based processing. Frame-based processing
increases throughput by implementing the algorithm in parallel on each sample in the input vector.
These implementations increase data throughput but use more hardware resources. The ports of
blocks that support frame-based processing accept column vector input and output signals. Each
element of the vector represents a sample in time. Using frame-based input can achieve gigasamples-
per-second (GSPS) throughputs. These high-throughput rates are also referred to as super-sample
rates.

Blocks that Support Frame-Based Input
Supported Block Parameters to Enable Frame

Input
Limitations

FFT and IFFT Connect a column vector to the
input data port. The vector size
must be a power of 2 between 1
and 64 and cannot be greater
than the FFT length.

Frame-based input is supported
only when Architecture is set
to Streaming Radix 2^2.

Channelizer and Channel
Synthesizer

Connect a column vector to the
input data port. The vector size
must be a power of 2 between 1
and 64 and cannot be greater
than the FFT length.

Discrete FIR Filter Connect a column vector to the
input data port. The vector size
must be a power of 2 between 1
and 64.

You cannot use frame-based
input with the partly serial
architecture.

Biquad Filter Connect a column vector to the
input data port. The input
vector size can be up to 64
samples, but large vector sizes
can make the calculation of
internal datatypes challenging.
Vector sizes of up to 16 samples
are practical for hardware
implementation.

Vector input is supported only
when you set Filter structure
to Pipelined feedback
form.

 High-Throughput HDL Algorithms

2-9

Supported Block Parameters to Enable Frame
Input

Limitations

FIR Decimator Connect a column vector to the
input data port. The vector size
must be less than or equal to 64
samples.

• You cannot use frame-based
input with Minimum
number of cycles between
valid input samples
greater than 1.

• When the vector size is less
than the decimation factor,
the decimation factor must
be an integer multiple of the
vector size.

• When the vector size is
greater than the decimation
factor, the vector size must
be an integer multiple of the
decimation factor.

FIR Interpolator Connect a column vector to the
input data port. The vector size
must be less than or equal to 64
samples.

You cannot use frame-based
input with Minimum number
of cycles between valid input
samples greater than 1.

CIC Decimator Connect a column vector to the
input data port. The input
vector size can be up to 64
samples.

Vector input is not supported
with programmable decimation
rate.

CIC Interpolator Connect a column vector to the
input data port. The input
vector size can be up to 64
samples.

Vector input is not supported
with programmable
interpolation rate.

NCO Set the Samples per frame
parameter to the desired output
vector size.

Complex to Magnitude-Angle Connect a column vector to the
input data port. The input
vector size can be up to 64
samples.

Delay 1 Connect a column vector to
the input port. The input
vector size can be up to 512
samples.

2 Set the Input processing
parameter to Columns as
channels (frame-
based).

2 HDL Optimized System Design

2-10

See Also

Related Examples
• “High-Throughput Channelizer for FPGA”

 High-Throughput HDL Algorithms

2-11

Hardware Control Signals

In this section...
“Streaming Interface with Valid Signal” on page 2-12
“Backpressure Signal” on page 2-12
“Reset Signal” on page 2-13

Streaming Interface with Valid Signal
DSP System Toolbox™ blocks and functions process matrices of data. In hardware, processing a large
matrix of data at one time has a high cost in memory and area. To save resources, serial processing is
preferable in HDL designs. DSP HDL Toolbox blocks use a streaming sample interface that represents
the characteristics of a physical signal. This interface means the blocks operate on one sample at a
time, or on a small vector of samples at a time, rather than a large matrix. The blocks accept and
return this streaming data accompanied by a control signal that indicates when the data is valid. You
can model real-world data patterns such as sample rates or bursty data by using this valid control
signal. One valid signal applies to all values in an input or output vector.

This waveform shows the input and output signals of the CIC Decimator block. The block is
configured with a decimation rate of 2. The input data is valid every second cycle. The block
decimates this signal and returns valid output data every fourth cycle.

You can increase throughput by using frame-based data streams that pass vectors of signals through
the blocks and System objects. Frame-based processing increases throughput by implementing the
algorithm in parallel on each sample in the input vector. These implementations increase data
throughput while using more hardware resources compared to scalar streaming algorithms. Most
algorithms in DSP HDL Toolbox support input and output vectors of up to 64 samples, but your vector
size might be further limited by the resources available for your design. For details of frame-based
support in DSP HDL Toolbox, see “High-Throughput HDL Algorithms” on page 2-9.

Backpressure Signal
Some DSP HDL Toolbox blocks provide a backpressure output control signal, named ready. This
signal indicates when the block has room for a new input sample. This signal is necessary because
these blocks cannot accept new samples while performing certain internal computations or when
internal storage is full, and the latency of those computations can vary with the configuration of the
block.

For example, when you use the burst architecture of the FFT block, you cannot provide the next
frame of input data until memory space is available. The ready signal indicates when the algorithm

2 HDL Optimized System Design

2-12

can accept new input data. When ready is 1 (true), you can apply input data and valid signals.
The algorithm ignores any input data and valid signals when ready is 0 (false). The waveform
shows the ready signal is 1 at the start of simulation, then goes low when the block receives the first
burst of input data. Then, while the block is processing that burst of data, the ready signal stays low.
When the block has room for new input samples, it sets the ready signal to 1 again. Once the ready
signal is high, the model can apply the next burst of input data.

For an example of how to use the ready signal with interpolators, see “Control Data Rate Using Ready
Signal” on page 3-26.

Reset Signal
Most DSP HDL Toolbox blocks provide an optional input reset signal that clears internal states. You
can also connect the global reset signal from HDL Coder™ tools to your designs. These are some
considerations for using the reset signal options.

• By default, the filter blocks connect the generated HDL global reset to only the control path
registers. The two reset parameters, Enable reset input port and Use HDL global reset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

• The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink®. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

• When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

Reset Considerations for Generated Test Benches

• FPGA-in-the-loop initialization provides a global reset but does not automatically provide a local
reset. With the default reset parameters, the data path registers that are not reset can result in
FPGA-in-the-loop (FIL) mismatches if you run the FIL model more than once without resetting the
board. Select Use HDL global reset to reset the data path registers automatically, or select
Enable reset input port and assert the local reset in your model so the reset signal becomes
part of the Simulink FIL test bench.

 Hardware Control Signals

2-13

• The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

See Also

Related Examples
• “Implement FFT Algorithm for FPGA”
• “Control Data Rate Using Ready Signal” on page 3-26
• “High-Throughput Channelizer for FPGA”

More About
• “High-Throughput HDL Algorithms” on page 2-9
• “Digital Signal Processing Design for FPGAs and ASICs”

2 HDL Optimized System Design

2-14

Block Reference Page Examples

• “Generate Sine Wave” on page 3-2
• “Fully Parallel Systolic FIR Filter Implementation” on page 3-5
• “Partly Serial Systolic FIR Filter Implementation” on page 3-9
• “Optimize Programmable FIR Filter Resources” on page 3-13
• “FIR Decimation for FPGA” on page 3-18
• “Implement atan2 Function for HDL” on page 3-20
• “Downsample a Signal” on page 3-23
• “Control Data Rate Using Ready Signal” on page 3-26
• “Automatic Delay Matching for the Latency of FFT Block” on page 3-29
• “Implement CIC Interpolator Filter for HDL” on page 3-31
• “Implement CIC Decimator Filter for HDL” on page 3-34
• “Implement Downsampler For HDL” on page 3-37
• “Implement Upsampler for HDL” on page 3-39

3

Generate Sine Wave

This example shows how to use the NCO block to generate a sine wave.

The example generates a sine wave with these specifications.

F0 = 510; % Desired output frequency (Hz)
Deltaf = 0.05; % Frequency resolution (Hz)
SFDR = 90; % Spurious free dynamic range (dB)
Ts = 1/8000; % Sample period (s)
phOffd = pi/2; % Desired phase offset (rad)

The frequency resolution of the sine wave depends on the size of the accumulator. Calculate the
number of required accumulator bits to achieve the desired frequency resolution. N must be an
integer value. Use this value to set the accumulator data type Word length parameter.

N = ceil(log2(1/(Ts*Deltaf))) %#ok<*NOPTS>

N =

 18

Quantizing the output of the accumulator allows you to achieve better frequency resolution without
increasing the lookup table size. Calculate the number of quantized accumulator bits from the
spurious free dynamic range specification. Ensure that the Quantize phase parameter is selected,
and then use this value to set the set the Number of quantizer accumulator bits parameter.

Q = ceil((SFDR - 12)/6)

Q =

 13

Calculate the phase increment. Use this value to set the Phase increment parameter.

phIncr = round(F0*2^N*Ts)

phIncr =

 16712

3 Block Reference Page Examples

3-2

Phase offset and dither are optionally added in the accumulator stage. Calculate the phase offset that
the block adds from the desired phase offset of the output wave. Use this value to set the Phase
offset parameter.

phOff = (2^N*phOffd)/(2*pi)

phOff =

 65536

Select the number of dither bits. In general, a good choice for the number of dither bits is the
accumulator word length minus the number of quantized accumulator bits. Use this value to set the
Number of dither bits parameter.

ditherBits = N - Q

ditherBits =

 5

Open and simulate the model. The NCO block in the model is configured with the variables calculated
in this script. The output word length and fraction length depend on the constraints of your
hardware; this example uses a word length of 16 and a fraction length of 14.

open_system('GenerateSineWaveHDL')
sim('GenerateSineWaveHDL')

 Generate Sine Wave

3-3

The Peak Finder results in the Spectrum Analyzer show that the output waveform is generated at 510
Hz. Experiment with the model to observe the effects on the output shown on the Spectrum Analyzer.
For example, try turning dithering on and off, and try changing the number of dither bits.

3 Block Reference Page Examples

3-4

Fully Parallel Systolic FIR Filter Implementation

This example shows how to implement a fully parallel 25-tap lowpass FIR filter by using the Discrete
FIR Filter block.

The model filters new data samples at every cycle.

Open Model

Open the model. Inspect the block parameters. Filter structure is set to Direct form systolic.

Run Model and Inspect Results

Run the model. Observe the input and output signals in the generated plots.

 Fully Parallel Systolic FIR Filter Implementation

3-5

3 Block Reference Page Examples

3-6

Use the model toolbar to open the Logic Analyzer. If the button is not displayed, expand the Review
Results app gallery.

Note the pattern of the validOut signal.

 Fully Parallel Systolic FIR Filter Implementation

3-7

Generate HDL Code

To generate HDL code from the Discrete FIR Filter block, right-click the block and select Create
Subsystem from Selection. Then right-click the subsystem and select HDL Code > Generate HDL
Code for Subsystem.

See Also
Blocks
Discrete FIR Filter

3 Block Reference Page Examples

3-8

Partly Serial Systolic FIR Filter Implementation

This example shows how to implement a 32-tap lowpass FIR filter using the Discrete FIR Filter block.

The two filter blocks in the example model implement an identical partly serial 32-tap filter. The top
block configures the serial filter by specifying the number of cycles N between input samples. This
spacing allows each multiplier to be shared by N coefficients. The second block is configured to use a
certain number of multipliers, M. These two configurations result in the same filter implementation.
For 32 symmetric coefficients, there are 16 unique coefficients. Therefore the filter shares each of 2
multipliers between 8 coefficients.

The model shows two ways of applying input samples, depending on the rate of the rest of your
design.

Open Model

Open the model. Inspect the top block parameters. Filter structure is set to Partly serial
systolic and Specify serialization factor as is set to Minimum number of cycles between
valid input samples. Number of cycles is set (to 8) using a variable, numCycles. In the lower
block, Specify serialization factor as is set to Maximum number of multipliers. Number of
multipliers is set (to 2) using a variable. The variables are defined in the PostLoadFcn callback
function.

From the color coding, you can see the rate of both filter blocks is the same, while the rate of the
generated input samples is different.

 Partly Serial Systolic FIR Filter Implementation

3-9

Run Model and Inspect Results

Run the model. Observe the input and output signals in the generated plots. The code to generate the
plots is in the PostSimFcn callback function.

3 Block Reference Page Examples

3-10

 Partly Serial Systolic FIR Filter Implementation

3-11

Use the model toolbar to open the Logic Analyzer. If the button is not displayed, expand the Review
Results app gallery.

Inspect the rising edges of ready, validIn, and validOut.

Generate HDL Code

To generate HDL code from either Discrete FIR Filter block, right-click the block and select Create
Subsystem from Selection. Then right-click the subsystem and select HDL Code > Generate HDL
Code for Subsystem. The two blocks generate the same HDL code.

See Also
Blocks
Discrete FIR Filter

3 Block Reference Page Examples

3-12

Optimize Programmable FIR Filter Resources

This example shows how to use programmable coefficients with the Discrete FIR Filter block and how
to optimize hardware resources for programmable filters.

The Discrete FIR Filter block optimizes resource use when the filter coefficients are symmetric or
antisymmetric or are zero-valued. To use these optimizations with programmable coefficients, all of
the input coefficient vectors must have the same symmetry and zero-valued coefficient locations. Set
the Coefficients prototype parameter to a representative coefficient vector. The block uses the
prototype to optimize the filter by sharing multipliers for symmetric or antisymmetric coefficients,
and removing multipliers for zero-valued coefficients.

If your coefficients are unknown or not expected to share symmetry or zero-valued locations, set
Coefficients prototype to []. When you do so, the block does not optimize multipliers.

This example shows how to set a prototype and specify programmable coefficients for a symmetric
filter and a filter with zero-valued coefficients. The example also explains how the block reduces the
number of multipliers in the filter in these cases.

Symmetric Filter Coefficients

Design two FIR filters, one with a lowpass response and the other with the complementary highpass
response. Both filters are odd-symmetric and have 43 taps.

Fpass = 0.45; % Passband frequency
Fstop = 0.55; % Stopband frequency
Apass = 1; % Passband attenuation (dB)
Astop = 60; % Stopband attenuation (dB)

f = fdesign.lowpass('Fp,Fst,Ap,Ast',Fpass,Fstop,Apass,Astop);
Hlp = design(f,'equiripple','FilterStructure','dffir'); % Lowpass
Hhp = firlp2hp(Hlp); % Highpass

hpNumerator = Hlp.Numerator; %#ok<NASGU>
lpNumerator = Hhp.Numerator; %#ok<NASGU>

The example model shows a filter subsystem with a control signal to switch between two sets of
coefficients. The HDL Algorithm subsystem includes a Discrete FIR Filter block and the two sets of
coefficients defined by the created workspace variables.

modelname = 'ProgFIRHDLOptim';
open_system(modelname);

 Optimize Programmable FIR Filter Resources

3-13

Because two sets of coefficients are symmetric in the same way, you can reduce the number of
multipliers in the filter implementation by setting the Coefficient prototype parameter of the
Discrete FIR Filter block. Set Coefficient prototype to either of the coefficient vectors. The example
model sets the prototype to hpNumerator.

When you use the prototype for symmetric coefficients, provide only the unique coefficients to the
coeff port. In this case, the filter has 43 odd-symmetric coefficients, so the input port expects the first
half of the coefficients, that is, 22 values.

open_system('ProgFIRHDLOptim/HDL Algorithm');

The model switches coefficients every 100 cycles. The filtered output data shows the effect of the
lowpass and highpass coefficients.

T = 512;
sim(modelname);

3 Block Reference Page Examples

3-14

The model is configured to output the resource report from HDL code generation. This feature
enables you to see the number of multipliers in the filter implementation. Because the block shares
multipliers for symmetric coefficients, the filter implementation uses 22 multipliers rather than 43.

Zero-Valued Filter Coefficients

Design two halfband FIR filters, one with a lowpass response and the other with the complementary
highpass response. Both filters have 43 symmetric taps, where every second tap is zero. Set the

 Optimize Programmable FIR Filter Resources

3-15

Coefficient prototype parameter to either of the coefficient vectors. Changing the workspace value
of hpNumerator updates the prototype in the block.

Similarly, specify 22 coefficients at the input port. Although no multipliers exist for the zero-valued
coefficients, for the block to maintain the correct alignment of the coefficients, you must specify the
zero-valued coefficients at the port.

N = 42;
f = fdesign.halfband('N,Ast',N,Astop);
Hlp = design(f,'equiripple','FilterStructure','dffir'); % Lowpass
Hhp = firlp2hp(Hlp); % Highpass

hpNumerator = Hlp.Numerator;
lpNumerator = Hhp.Numerator;

sim(modelname);

The model is configured to output the resource report from HDL code generation. This feature
enables you to see the number of multipliers in the filter implementation. In this case, because the
filter optimizes for symmetry and zero-valued coefficients, the implementation uses 12 multipliers
rather than 43.

3 Block Reference Page Examples

3-16

See Also
Blocks
Discrete FIR Filter

 Optimize Programmable FIR Filter Resources

3-17

FIR Decimation for FPGA

This example shows how to decimate streaming samples using a hardware-friendly polyphase FIR
filter. It also shows the differences between the dsp.FIRDecimator object and the hardware-
friendly streaming interface of the FIR Decimator block.

Generate an input sine wave in MATLAB®. The example model imports this signal from the MATLAB
workspace. Choose a decimation factor, coefficients, and the input vector size for the HDL-optimized
block.

T = 512;
waveGen = dsp.SineWave(0.9,100,0,'SamplesPerFrame',T);
dataIn = fi(waveGen()+0.05,1,16,14);

decimFactor=8;
coeffs = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
inputVecSize=4;

The example model imports the input signal from the MATLAB workspace and applies it as vectors to
the FIR Decimator block. The model returns the output from the block to the MATLAB workspace for
comparison.

The FIR Decimator block applies samples to the filter in a different phase than the
dsp.FIRDecimator object. To match the numerical behavior, apply decimFactor - 1 zeros to the
FIR Decimator block before the start of the data samples.

dataInHDL = [zeros(decimFactor-1,1);dataIn];

modelName = 'FIRDecimHDL';
open_system(modelName);
set_param(modelName,'SimulationCommand','Update');

The FIR Decimator block accepts a vector of inputVecSize-by-1 samples and returns scalar output.
The block performs single-rate processing and indicates valid samples in the output signal by setting
the output valid signal to 1. The Simulink sample time is inputVecSize for the whole model. The
block sets the output valid signal to 1 every decimFactor/inputVecSize samples.

3 Block Reference Page Examples

3-18

out = sim('FIRDecimHDL');

Create a dsp.FIRDecimator System object™ and generate reference data to compare against the
HDL model output. The object can accept any input vector size that is a multiple of the decimation
factor, so you can calculate the output with one call to the object. If you change the decimation factor
to a value that is not a factor of T, you must also adjust the value of T (size of dataIn).

The block and the object are both configured to use full-precision internal data types. The object
computes a different output data type in this mode. This difference means that the output might not
match if the internal values saturate the data types.

decimRef = dsp.FIRDecimator(decimFactor,'Numerator',coeffs);
refDataOut = decimRef(dataIn);

For the output of the FIR Decimator block, select data samples where the output valid signal was 1,
and compare them with the samples returned from the dsp.FIRDecimator object.

hdlVec = out.dataOut(out.validOut);
refVec = refDataOut(1:size(hdlVec,1));
errVec = hdlVec - refVec;
maxErr = max(abs(errVec));
fprintf('\nFIR decimator versus reference: Maximum error out of %d values is %d\n',length(hdlVec),maxErr);

FIR decimator versus reference: Maximum error out of 55 values is 0

See Also
Blocks
FIR Decimator

 FIR Decimation for FPGA

3-19

Implement atan2 Function for HDL

This example shows how to use the Complex to Magnitude-Angle block to implement the atan2
function in hardware.

This example model compares the output of Complex to Magnitude-Angle block with the atan2
function implemented using Trigonometric Function block.

HDL Counter 1 and HDL Counter 2 blocks generate the real and imaginary parts, respectively, of the
complex number.

Real-Imag to Complex block constructs the complex output from real and imaginary inputs.

Trigonometric Function block with function parameter set as atan2 is used to generate the reference
output angle. This block uses the CORDIC approximation to calculate the angle.

The Complex to Magnitude-Angle block is configured to return the angle in radians produces the
angle of the complex input as an output. This block also models the latency of the hardware
implementation.

To align the data for comparison, the reference data path includes a delay block with the same
latency.

The Complex to Magnitude-Angle block supports HDL code generation, if you add it to a subsystem.

Run the Simulink™ model.

modelname = 'HDLatan2Example';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');
out = sim(modelname);

Compare the outputs of Complex to Magnitude-Angle block against the atan2 function block.

figure('units','normalized','outerposition',[0 0 1 1])
subplot(4,1,1)
plot(simout1(:,1))

3 Block Reference Page Examples

3-20

hold on;
plot(simout1(:,2))
hold off;
legend('Real','Imaginary')
title('Real and Imaginary Part of the Input')

subplot(4,1,2)
plot(simout2(:,1))
title('Output of atan2 reference block')

subplot(4,1,3)
plot(simout2(:,2))
title('Output of Complex to Magnitude-Angle Block')

subplot(4,1,4)
plot(simout3)
title('Error signal')

 Implement atan2 Function for HDL

3-21

See Also
Blocks
Complex to Magnitude-Angle

Functions
atan2

3 Block Reference Page Examples

3-22

Downsample a Signal

Convert a signal from 48 kHz to 32 kHz using the FIR Rate Converter block.

The source is a cosine input signal, sampled at 48kHz. The model passes a new data sample into the
block on every time step by holding the input valid port true. After resampling, the output valid
signal is true on only 2/3 of the time steps.

Open the Model

Configure the Model

Define the data rate parameters in the InitFcn callback.

 Downsample a Signal

3-23

Configure the FIR Rate Converter block. Use the default interpolation factor of 2 and decimation
factor of 3. Use the firmpm function to design an equiripple FIR filter. In the Data Types group, set
the Coefficients data type to fixdt(1,16,15) to accommodate the filter you designed.

Run the Model and Display Results

Run the model. Use the Logic Analyzer to view the input and output signals of the block. The blue
icon in the model indicates streamed signals. Launch the Logic Analyzer from the model's toolstrip.

In the Logic Analyzer, note the pattern of validIn and the resulting validOut signal.

3 Block Reference Page Examples

3-24

Generate HDL Code

To generate HDL code from the FIR Rate Converter block, right-click the block and select Create
Subsystem from Selection. Then right-click the subsystem and select HDL Code > Generate HDL
Code for Subsystem.

 Downsample a Signal

3-25

Control Data Rate Using Ready Signal

This example shows how to use a backpressure signal to control an upstream data source for an
interpolator design.

It also shows how to regulate the output data pattern by using a FIFO and a request signal.

Hardware algorithms operate on streaming data to make efficient use of hardware resources, such as
memory for storing samples. The blocks have limited storage for incoming samples, and take time to
process each sample. In an interpolator design, there must also be cycles available to accommodate
the interpolated output samples.

To ensure that a block does not receive input samples when it cannot accept them, use one of these
options.

• Space the input samples with invalid cycles in between to accommodate the algorithm. Regular
input spacing can also enable internal resource sharing. For details of this type of input rate
management, see the “Implement Digital Upconverter for FPGA” on page 1-79 example.

• Use a backpressure signal to stop upstream blocks from providing data when downstream blocks
cannot accept it. DSP HDL Toolbox™ blocks provide the ready output signal to indicate when the
algorithm can and cannot accept new input samples. This example shows how to use this signal to
implement backpressure in your system.

The example model uses a FIR Rate Converter block to upsample a signal from 40 MHz to 100 MHz.
To achieve this rate change, the block must return 2 or 3 output samples for each input sample. The
generation of these extra samples means that the block cannot accept new input samples every cycle,
and that the output rate can be nonuniform. This example shows how to use the ready output signal
to control the upstream data source, and how to use a FIFO to regulate the output data rate.

Configure Model

Define the data rate parameters. The Simulink® model uses these values to configure the FIR Rate
Converter block and the FIFO control signals. Use the firpm function to design an equiripple FIR
filter.

FsIn = 40e6; % input signal sample rate
TsIn = 1/FsIn; % input signal sample time
NsIn = 100; % number of input samples
t = TsIn*(0:NsIn-1); % input time instants

stopTime = (NsIn-1) * TsIn;

Ts = 1/200e6; % system clock rate; twice the output sample rate

coeffs = firpm(70, [0,.15,.25,1], [1,1,0,0]);
interpFactorL = 5;
decimFactorM = 2;

The output FIFO depth must be at least two times the delay around the feedback loop in cycles. This
delay is equal to the number of cycles between the request signal going to 1 (true) to pop the FIFO
(enabling a new input to the FIR Rate Converter block) and the resulting output valid from the FIR
Rate Converter block.

3 Block Reference Page Examples

3-26

The latency of the block is a pipelined adder tree for the filter coefficients, plus 7 cycles. When
interpolating, each input sample can yield up to ceil(L/M) output samples. The feedback loop also
includes one cycle for the FIFO to update, one cycle for ready computation, and one cycle for the
register on the feedback path.

delayLineLength = ceil(length(coeffs)/interpFactorL);
rateConverterLatency = ceil(log2(delayLineLength)) + 7;
feedbackLoopLatency = rateConverterLatency + ceil(interpFactorL/decimFactorM) + 3;
fifoDepth = 2*feedbackLoopLatency;

In the model, the FIR Rate Converter block and the FIFO subsystem are configured by using the
workspace variables already defined. The FIR Rate Converter block has the optional ready port
enabled and the coefficient data type is set to fixdt(1,16,15).

modelName = 'FIRRateConversionHDL_interpReadyRequest';
open_system(modelName);
set_param(modelName,'SimulationCommand','Update');

To control the input data rate, the block sets the ready output signal to 1 (true) when the block can
accept a new input sample on the next time step. Upstream blocks must only apply valid input data
when the ready signal is 1 (true). This example model combines the ready signal with a signal that
indicates when the output FIFO is less than half full. The model connects the combined signal as an
enable to a waveform source that generates one input sample at a time. This input data rate control
ensures that data is only applied when the block is ready to accept it, and that the output FIFO will
not overflow.

To control the output data rate, the model implements a FIFO for the output samples. The model
connects a toggling signal to the FIFO pop port. When you use a system clock of 200MHz and return
output samples from the FIFO every second time step, the output data rate is a uniform 100 MHz.

Run Model and Display Results

Open the Logic Analyzer to view the input and output signals of the block. The blue icon on signals
in the model indicates those signals are logged and available to view in the Logic Analyzer.

The waveform shows how the ready_before_and signal toggles when the block is processing input
samples and cannot accept new data. The FIFO halffull signal also turns off the combined ready
signal to the input generator. The validIn signal responds to the combined ready signal to avoid
sending new data when either the block or the FIFO does not have room. The waveform shows that

 Control Data Rate Using Ready Signal

3-27

the request signal is high every second cycle, which generates the final dataOut and validOut
signals from the FIFO.

Generate HDL Code

You must have the HDL Coder™ product to generate HDL code. To generate HDL code from the FIR
Rate Converter block and the FIFO and ready logic, create a subsystem from the area shown in the
model. Then right-click the subsystem and select HDL Code > Generate HDL Code for
Subsystem.

3 Block Reference Page Examples

3-28

Automatic Delay Matching for the Latency of FFT Block

This example shows how to programmatically obtain the latency of an FFT block in a model. You can
use the latency value for delay matching of parallel data paths.

Be cautious with delay matching for large signals or long latencies, since it adds memory to your
hardware implementation. Alternatively, if the signal does not change within a frame, use the valid or
frame control signals to align the signal with the output of the FFT block.

Open a model that contains an FFT or an IFFT block, such as the model from the “Implement FFT
Algorithm for FPGA” example.

modelname = 'FFTHDLOptimizedExample_Streaming';
load_system(modelname);
set_param(modelname,'SimulationCommand','Update');
open_system([modelname '/FFT Streaming']);

This example includes a ffthdlLatency function that calculates the latency of the block for its
current parameters. Call the function with the block pointer and input vector size. You can use the
Simulink path to the block, or select the block in the model to obtain a pointer, gcb. In this model, the
input signal is a vector of 8 samples.

latency = ffthdlLatency([modelname '/FFT Streaming/FFT'],8)

latency =

 139

The function copies the parameters from the block pointer and creates a System object™ with the
same settings as the block. Then it calls the getLatency function on the object. See getLatency.

function lat = ffthdlLatency(block, vectorsize)

% default vector size = 1
if nargin == 1
 vectorsize = 1;
end

fftlen = evalin('base',get_param(block, 'FFTLength'));
arch = get_param(block, 'Architecture');
bri = strcmpi(get_param(block, 'BitReversedInput'), 'on');
bro = strcmpi(get_param(block, 'BitReversedOutput'), 'on');

fftobj = dsphdl.FFT('FFTLength',fftlen, ...

 Automatic Delay Matching for the Latency of FFT Block

3-29

 'Architecture', arch, ...
 'BitReversedInput', bri, ...
 'BitReversedOutput', bro);

lat = getLatency(fftobj, fftlen, vectorsize);

end

See Also
Blocks
FFT | IFFT

3 Block Reference Page Examples

3-30

Implement CIC Interpolator Filter for HDL

This example shows how to use the CIC Interpolator block to filter and upsample data. This block
supports scalar and vector inputs. To work with scalar and vector inputs separately, this example uses
two Simulink® models. You can generate HDL code from the subsystems in these Simulink models.

Set Up Input Data Parameters

Set up these workspace variables to configure the CIC Interpolator block. This block supports fixed
and variable interpolation rates for scalar inputs and only a fixed interpolation rate for vector inputs.
The example runs the HDLCICInterpolatorModel.slx model when you set the scalar value to
true and runs the HDLCICInterpolatorModelVectorSupport.slx model when you set the
scalar value to false. For scalar inputs, choose a range for the input varRValue values and set
the interpolation factor value, R, to the maximum expected interpolation factor. For vector inputs, the
input data must be a column vector of size 1 to 32.

R = 8; % interpolation factor
M = 1; % differential delay
N = 3; % number of sections
scalar = true; % true for scalar; false for vector

if scalar
 varRValue = [2,4,R];
 vecSize = 1;
 modelname = "HDLCICInterpolatorModel";
else
 varRValue = R; %#ok
 vecSize = 1;
 modelname = "HDLCICInterpolatorModelVectorSupport";
end

numFrames = length(varRValue);
dataSamples = cell(1,numFrames);
varRtemp = cell(1,numFrames);
cicFcnOutput = [];
WL = 0; % word length
FL = 0; % fraction length

Generate Reference Output from dsp.CICInterpolator System Object

To generate reference output data for comparison, apply the samples to the dsp.CICInterpolator
System object™. This System object does not support variable interpolation rates, so you must create
and release the object for each change in the interpolation factor.

for i = 1:numFrames
 framesize = 4;
 dataSamples{i} = fi(randn(framesize,1),1,16,8);
 varRtemp{i} = fi(varRValue(i)*ones(framesize,1),0,12,0);
 obj = dsp.CICInterpolator("DifferentialDelay",M,"NumSections",N, ...
 "InterpolationFactor",varRValue(i));
 cicOut = step(obj,dataSamples{i}).';
 WL = max([WL,cicOut.WordLength]);
 FL = max([FL,cicOut.FractionLength]);
 cicFcnOutput = [fi(cicFcnOutput,1,WL,FL),cicOut];
 release(obj);
end

 Implement CIC Interpolator Filter for HDL

3-31

Convert Input to Stream of Samples and Import to Simulink Model

Generate a stream of samples by converting frames to samples. Provide those samples (sampleIn) as
input to the Simulink model along with the corresponding valid signal (validIn) and interpolation
rate (varRIn). The latency of the block for scalar and vector inputs is calculated based on the type of
input and the number of sections, N. For more information about latency, see the “Gain correction”
parameter. To flush remaining data before changing the interpolation rate, run the model by inserting
the required number of idle cycles after each frame using the idlecyclesbetweenframes value.

idlecyclesbetweensamples = R; % upsampling the inputs by factor R
idlecyclesbetweenframes = floor((vecSize-1)*(N/vecSize)) + 1 + N ...
 + (2+(vecSize+1)*N) + 9;

sampleIn = [];
validIn = [];
varRIn = [];
len = 0;

for ij = 1:numFrames

 dataInFrame = reshape([0; dataSamples{ij}],vecSize,[]);
 len = size(dataInFrame,2);

 data = [];
 valid= [];
 varR = [];
 for ii = 1:len
 data = [data dataInFrame(:,ii) ...
 zeros(vecSize,idlecyclesbetweensamples)]; %#ok
 valid = [valid true(1,1) ...
 false(1,idlecyclesbetweensamples)]; %#ok
 varR = [varR varRtemp{ij}(1) ...
 zeros(1,idlecyclesbetweensamples)]; %#ok
 end

 sampleIn = cast([sampleIn,data, ...
 zeros(vecSize,idlecyclesbetweenframes)],"like",dataInFrame);
 validIn = logical([validIn,valid,zeros(1,idlecyclesbetweenframes)]);
 varRIn = fi([varRIn,varR,zeros(1,idlecyclesbetweenframes)],0,12,0);

end

sampleIn = sampleIn.';
sampletime = 1;
simTime = length(validIn);

Run Simulink Model

Run the model. Running the model imports the input signal variables from the MATLAB® workspace
to the CIC Interpolator block in the model.

open_system(modelname);
sim(modelname);

3 Block Reference Page Examples

3-32

Compare Simulink Block Output with MATLAB System Object Output

Capture the output of the Simulink block. Compare the captured output with the output of the
dsp.CICInterpolator System object.

sampleOut = squeeze(sampleOut_ts.Data).';
validOut = squeeze(validOut_ts.Data);
cicOutput = sampleOut(validOut);

fprintf('\nCIC Interpolator\n');
difference = (abs(cicOutput-cicFcnOutput(1:length(cicOutput)))>0);
fprintf(['\nTotal number of samples differed between Simulink block ' ...
 'output and MATLAB System object output is: %d \n'],sum(difference));

CIC Interpolator

Total number of samples differed between Simulink block output and MATLAB System object output is: 0

 Implement CIC Interpolator Filter for HDL

3-33

Implement CIC Decimator Filter for HDL

This example shows how to use a CIC Decimator block to filter and downsample data. This block
supports scalar and vector inputs. To work with scalar and vector inputs separately, this example uses
two Simulink® models. You can generate HDL code from the subsystems in these Simulink models.

Set Up Input Data Parameters

Set up these workspace variables for the models to use. These variables configure the CIC Decimator
block inside of them. This block supports fixed and variable decimation rates for scalar inputs and
only a fixed decimation rate for vector inputs. The example runs the HDLCICDecimatorModel.slx
model when you set the scalar value to true and runs the
HDLCICDecimatorModelVectorSupport.slx model when you set the scalar value to false. For
scalar inputs, choose a range for the input varRValue values and set the decimation factor value, R,
to the maximum expected decimation factor. For vector inputs, the input data must be a column
vector of size 1 to 64. R must be an integer multiple of input frame size.

R = 8; % Decimation factor
M = 1; % Differential delay
N = 3; % Number of sections
scalar = true; % true for scalar; false for vector
if scalar
 varRValue = [4,R];
 vecSize = 1;
 modelname = "HDLCICDecimatorModel";
else
 varRValue = R; %#ok
 fac = (factor(R));
 vecSize = fac(randi(length(fac),1,1));
 modelname = "HDLCICDecimatorModelVectorSupport";
end

numFrames = length(varRValue);
dataSamples = cell(1,numFrames);
varRtemp = cell(1,numFrames);
cicFcnOutput = [];
WL = 0; % Word length
FL = 0; % Fraction length

Generate Reference Output from dsp.CICDecimator System Object

Generate frames of random input samples and provide them as input to the dsp.CICDecimator
System object™. The output generated from this System object is used as a reference data for
comparison. This System object does not support variable decimation rates, so you must create and
release this object for any change in the decimation factor value.

for i = 1:numFrames
 framesize = varRValue(i)*randi([5 20],1,1);
 dataSamples{i} = fi(randn(vecSize,framesize),1,16,8);
 varRtemp{i} = fi(varRValue(i)*ones(framesize,1),0,12,0);
 obj = dsp.CICDecimator("DifferentialDelay",M,"NumSections",N, ...
 "DecimationFactor",varRValue(i));
 cicOut = step(obj,dataSamples{i}(:)).';
 WL = max([WL,cicOut.WordLength]);
 FL = max([FL,cicOut.FractionLength]);

3 Block Reference Page Examples

3-34

 cicFcnOutput = [fi(cicFcnOutput,1,WL,FL),cicOut];
 release(obj);
end

Convert Input to Stream of Samples and Import them to Simulink Model

Generate a stream of samples by converting frames to samples. Provide those samples (sampleIn)
and the valid signal (validIn) as inputs to the Simulink model. The latency of the block for scalar
and vector inputs is calculated based on the type of input and the number of sections, N. For more
information, see “Latency”. To flush remaining data, run the model by inserting the required number
of idle cycles after each frame using the idlecyclesbetweenframes value.

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = floor((vecSize-1)*(N/vecSize))+ 1 + N + ...
 (2+(vecSize+1)*N) + 9;

sampleIn = [];
validIn = [];
varRIn = [];
len = 0;

for ij = 1:numFrames

 dataInFrame = dataSamples{ij};
 if scalar
 len = length(dataInFrame);
 else
 len = size(dataInFrame,2); %#ok
 end

 data = [];
 valid=[];
 varR = [];
 for ii = 1:len
 data = [data dataInFrame(:,ii) ...
 zeros(vecSize,idlecyclesbetweensamples)]; %#ok
 valid = [valid true(1,1) ...
 false(1,idlecyclesbetweensamples)]; %#ok
 varR = [varR varRtemp{ij}(ii) ...
 zeros(1,idlecyclesbetweensamples)]; %#ok
 end

 sampleIn = cast([sampleIn,data, ...
 zeros(vecSize,idlecyclesbetweenframes)],"like",dataInFrame);
 validIn = logical([validIn,valid,zeros(1,idlecyclesbetweenframes)]);
 varRIn = fi([varRIn,varR,zeros(1,idlecyclesbetweenframes)],0,12,0);

end

sampletime = 1;
simTime = length(validIn);

Run Simulink Model

Run the model. Running the model imports the input signal variables from the MATLAB® workspace
to the CIC Decimator block in the model.

 Implement CIC Decimator Filter for HDL

3-35

open_system(modelname);
sim(modelname);

Compare Simulink Block Output with MATLAB System Object Output

Capture the output of the Simulink block. Compare that output with the output of the
dsp.CICDecimator System object.

sampleOut = squeeze(sampleOut_ts.Data).';
validOut = squeeze(validOut_ts.Data);
cicOutput = sampleOut(validOut);

fprintf('\nCIC Decimator\n');
difference = (abs(cicOutput-cicFcnOutput(1:length(cicOutput)))>0);
fprintf(['\nTotal number of samples that differed between Simulink block ' ...
 'output and MATLAB System object output: %d \n'],sum(difference));

CIC Decimator

Total number of samples that differed between Simulink block output and MATLAB System object output: 0

3 Block Reference Page Examples

3-36

Implement Downsampler For HDL

This example shows how to use the Downsampler block to downsample data. This block supports
scalar and vector inputs. You can generate HDL code from the subsystem used in this example.

Set Up Input Data Parameters

Set up workspace variables for the Simulink® model to use. These variables configure the
Downsampler block inside the subsystem.

K = 8; % Downsample factor
O = 3; % Sample offset
scalar = true;
if scalar
 vecSize = 1;
 value = 1;
else
 vecSize = 16; %#ok % Vector size must be a multiple or factor of K
 value = vecSize/K;
end

Generate Reference Data From Function

Generate frames of random input samples and apply to the downsample function. Use the output as
reference data against which to compare the output of the block.

totalsamples = 0;
numFrames = 1;
dataSamples = cell(1,numFrames);
framesize = zeros(1,numFrames);
refOutput = [];
WL = 0; % Word length
FL = 0; % Fraction length

for i = 1:numFrames
 framesize(i) = randi([5 200],1,1)*vecSize;
 dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
 ref_downsample= downsample((dataSamples{i}(:)),K,O);
 refOutput = [refOutput,ref_downsample]; %#ok
end

Run Model

Run the model to import the input signal variables from the MATLAB® workspace to the
Downsampler block in the model. Insert the required number of idle cycles after each frame using the
latency variable to avoid invalid output data. Initialize the size of the output to accommodate the
output data.

latency = 2+O;
sampleIn = dataSamples{i};
validIn = true(1,sum(framesize));

sampletime = 1;
simTime = length(validIn)+latency;

modelname = "HDLDownsampler";

 Implement Downsampler For HDL

3-37

open_system(modelname);
sim(modelname);

Compare Block Output with Function Output

Compare the output of the block with the output of the Downsampler function.

sampleOut = squeeze(sampleOut_ts.Data);
validOut = squeeze(validOut_ts.Data);
if scalar
 HDLOutput = sampleOut(validOut);
else
 HDLOutput = sampleOut(:,validOut); %#ok
end
HDLOutput = HDLOutput(:);

fprintf('\n Downsampler\n');
difference = (abs(HDLOutput-refOutput(1:length(HDLOutput)))>0);
fprintf(['\nTotal number of samples differed between Behavioral ' ...
 'and HDL simulation: %d \n'],sum(difference));

 Downsampler

Total number of samples differed between Behavioral and HDL simulation: 0

3 Block Reference Page Examples

3-38

Implement Upsampler for HDL

This example shows how to use the Upsampler block to upsample data. This block supports scalar
and vector inputs. You can generate HDL code from the subsystem used in this example.

Set Up Input Data Parameters

Set up workspace variables for the Simulink® model to use. These variables configure the Upsampler
block inside the subsystem.

L = 8; % Upsample factor
O = 0; % Sample offset

scalar = true;
if scalar
 vecSize = 1;
 outSize = 1;
 minCycles = L;
else
 vecSize = 16; %#ok % Vector size must be a multiple or factor of L
 outSize = vecSize*L;
 minCycles = 1;
end

Generate Reference Data from Function

Generate frames of random input samples and apply the upsample function. Use the output as
reference data against which to compare the output of the block.

totalsamples = 0;
numFrames =1;
dataSamples = cell(1,numFrames);
framesize = zeros(1,numFrames);
refOutput = [];
WL = 0; % Word length
FL = 0; % Fraction length

for i = 1:numFrames
 framesize(i) = randi([5 200],1,1);
 dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
 ref_upsample= upsample((dataSamples{i}(:)),L,O);
 refOutput = [refOutput,ref_upsample]; %#ok
end

Run Model

Run the model to import the input signal variables from the MATLAB® workspace to the Upsampler
block in the model. Insert the required number of idle cycles after each frame using the latency
variable to avoid invalid output data. Initialize the size of the output to accommodate the output data.

latency = 3;
sampleIn = zeros(vecSize,size(dataSamples{i},2)*minCycles);
validIn = upsample(true(1,length(dataSamples{i})),minCycles);
sampleIn(:,validIn) = dataSamples{i};

sampletime = 1;

 Implement Upsampler for HDL

3-39

simTime = length(validIn)+latency;

modelname = "HDLUpsampler";
open_system(modelname);
sim(modelname);

Compare Block Output with Function Output

Compare the output of the block with the output of the Upsampler function.

sampleOut = squeeze(sampleOut_ts.Data);
validOut = squeeze(validOut_ts.Data);
if scalar
 HDLOutput = sampleOut(validOut);
else
 HDLOutput = sampleOut(:,validOut); %#ok
end
HDLOutput = HDLOutput(:);

fprintf('Upsampler\n');
difference = (abs(HDLOutput-refOutput(1:length(HDLOutput)))>0);
fprintf(['\nTotal number of samples differed between Behavioral ' ...
 'and HDL simulation: %d \n'],sum(difference));

Upsampler

Total number of samples differed between Behavioral and HDL simulation: 0

3 Block Reference Page Examples

3-40

HDL Code Generation and Deployment

4

Prototype DSP HDL Algorithms on Hardware
Support packages such as the HDL Coder Support Package for Xilinx RFSoC Devices enable you to
design, prototype, and verify practical digital signal processing systems on hardware.

• Use an Xilinx RFSoC board as an I/O peripheral to transmit and receive real-time arbitrary
waveforms using MATLAB® System objects or Simulink blocks.

• Acquire high-bandwidth signals by using burst mode.
• Run signal processing application examples to get started with targeting your designs to

hardware.
• In Simulink, customize and prototype DSP algorithms. Target only the FPGA fabric of the device,

or deploy partitioned hardware-software co-design implementations across the ARM® processor
and the FPGA fabric of the device.

The “Polyphase Channelizer” (HDL Coder Support Package for Xilinx RFSoC Devices) example shows
how to use the Channelizer block to process incoming analog-to-digital converter (ADC) samples and
produce a spectrum that has 512 MHz of bandwidth. The “Pulse-Doppler Radar Using Xilinx RFSoC
Device” (SoC Blockset Support Package for Xilinx Devices) example shows how to use the Discrete
FIR Filter block in a pulse-Doppler radar system targeted on the Xilinx Zynq® UltraScale+™ RFSoC
evaluation kit.

How to Install Support Packages
A support package is an add-on that enables you to use a MathWorks® product with specific third-
party hardware and software. Support packages use the license of the base product. For instance,
HDL Coder Support Package for Xilinx RFSoC Devices requires a license for HDL Coder.

Install support packages using the MATLAB Add-Ons menu. You can also use the Add-Ons menu to
update installed support package software or update the firmware on third-party hardware.

To install support packages, on the MATLAB Home tab, in the Environment section, select Add-Ons
> Get Hardware Support Packages. You can filter this list by selecting categories (such as
hardware vendor or application area) or by performing a keyword search.

Search the Add-Ons list for these support packages:

• HDL Coder Support Package for Xilinx RFSoC Devices
• SoC Blockset™ Support Package for Xilinx Devices
• HDL Coder Support Package for Intel SoC Devices
• HDL Coder Support Package for Xilinx Zynq® Platform
• HDL Coder Support Package for Intel FPGA Boards
• Embedded Coder® Support Package for Xilinx Zynq Platform (needed only for hardware-software

co-design)
• Embedded Coder Support Package for Intel SoC Devices (needed only for hardware-software co-

design)

When the support package installation is complete, you must set up the host computer and radio
hardware. For Windows® systems, the installer provides guided setup steps. For Linux® systems, the
installer links to manual setup instructions.

4 HDL Code Generation and Deployment

4-2

See Also

More About
• Xilinx RFSoC Devices
• “Pulse-Doppler Radar Using Xilinx RFSoC Device” (SoC Blockset Support Package for Xilinx

Devices)
• “Polyphase Channelizer” (HDL Coder Support Package for Xilinx RFSoC Devices)

 Prototype DSP HDL Algorithms on Hardware

4-3

Radar Application Examples

5

FPGA-Based Beamforming in Simulink: Algorithm Design

This example shows the first half of a workflow to develop a beamformer in Simulink® suitable for
implementation on hardware, such as a field programmable gate array (FPGA). It also shows how to
compare the results of the implementation model with those of a behavioral model.

The second part of the example “FPGA-Based Beamforming in Simulink: Code Generation” on page 5-
9 shows how to generate HDL code from the implementation model and verify that the generated
HDL code produces the correct results compared to the behavioral model.

This example shows how to implement an FPGA-ready beamformer to match a corresponding
behavioral model in Simulink by using the Phased Array System Toolbox™, DSP System Toolbox™,
and Fixed-Point Designer™ libraries. To verify the implementation model, this example compares the
simulation output of the implementation model with the output of the behavioral model.

The Phased Array System Toolbox is used to design and verify the floating-point functional algorithm,
which provides the behavioral reference model. The behavioral model is then used to verify the
results of the fixed-point implementation model used to generate HDL code.

Fixed-Point Designer provides data types and tools for developing fixed-point and single-precision
algorithms to optimize performance on embedded hardware. You can perform bit-true simulations to
observe the impact of limited range and precision without implementing the design on hardware.

Partitioning Model for FPGA

There are three key modeling concepts to keep in mind when preparing a Simulink model to target
FPGAs:

• Sample-based processing: Also commonly referred to as serial processing, sample-based
processing is an efficient data processing technique in hardware designs that enables you to
tradeoff between resources and throughput.

• Subsystem targeted for HDL code generation: In order to generate HDL code from a model,
the implementation algorithm must be inside a Simulink subsystem.

• Time-aligned outputs of behavioral and implementation models: For comparing the outputs
of the behavioral and FPGA implementation models, you must time align their outputs by adding
latency to the behavioral model.

Beamforming Algorithm

This example shows a phase-shift beamformer as the behavioral algorithm, which is re-implemented
in the HDL Algorithm subsystem by using Simulink blocks that support HDL code generation. The
beamformer calculates the phase required between each of the ten channels to maximize the
received signal power in the direction of the incident angle. The figure shows the Simulink model
with the behavioral algorithm and its corresponding implementation algorithm for an FPGA.

modelname = 'SimulinkBeamformingHDLWorkflowExample';
open_system(modelname);
set(allchild(0),'Visible','off');

5 Radar Application Examples

5-2

The Simulink model has two branches. The top branch is the behavioral, floating-point model of the
algorithm and the bottom branch is the functionally-equivalent fixed-point version using blocks that
support HDL code generation. Besides plotting the output of both branches to compare the two, this
example also calculates and plots the difference, or error, between both outputs.

The model has a Delay () block at the output of the behavioral algorithm. This delay is necessary
because the implementation algorithm uses 55 delays to implement pipelining which creates latency
that needs to be accounted for. Accounting for this latency is called delay balancing and is necessary
to time-align the output between the behavioral model and the implementation model to make it
easier to compare the results.

Multi-Channel Receive Signal

To synthesize a received signal at the phased array antenna, the model includes a subsystem that
generates a multi-channel signal. The Baseband Multi-channel Signal subsystem models a
transmitted waveform and the received target echo at the incident angle captured via a 10-element
antenna array. The subsystem also includes a receiver pre-amp model to account for receiver noise.
This subsystem generates the input stimulus for our behavioral and implementation models.

open_system([modelname '/Baseband Multi-channel Signal']);

Serialization and Quantization

The model includes a Serialization & Quantization subsystem which converts floating-point,
frame-based signals to fixed-point, sample-based signals necessary for modeling streaming data in

 FPGA-Based Beamforming in Simulink: Algorithm Design

5-3

hardware. This model uses scalar streaming processing because this algorithm runs slower than 400
MHz. The hardware implementation can be optimized for resources rather than for higher
throughput.

open_system([modelname '/Serialization & Quantization']);
set_param(modelname,'SimulationCommand','update')

The input signal to the serialization subsystem has 10 channels with 300 samples per channel or a
300x10 size signal. The subsystem serializes, or unbuffers, the signal producing a sample-based
signal that's 1x10, i.e., one sample per channel, which is then quantized to meet the requirements of
the system.

The output data type of the Quantize Signal block is fixdt(1,12,9), which is a signed value with
12-bit word length and 9-bit fraction length precision. The word length is 12 bits because the design
is targeted to a Xilinx® Virtex®-7 FPGA which is connected to a 12-bit ADC. The fraction length
accommodates the maximum range of the input signal.

Designing the Implementation Subsystem

The HDL Algorithm subsystem, which is targeted for HDL code generation, implements the
beamformer, which was designed using Simulink blocks that support HDL code generation.

The Angle2SteeringVec subsystem calculates the signal delay at each antenna element of a
Uniform Linear Array (ULA). The delay is then fed to a multiply and accumulate (MAC) subsystem to
perform beamforming.

open_system([modelname '/HDL Algorithm']);

The algorithm in the HDL Algorithm subsystem is functionally equivalent to the phase-shift
beamforming behavioral algorithm but can generate HDL code. There are three main differences that
enable this subsystem to generate efficient HDL code.

1 The design processes inputs serially, i.e. using sample-based processing.
2 The subsystem uses fixed-point data types for any calculations.
3 The implementation includes Delays that enable pipelining by the HDL synthesis tool.

To ensure proper clock timing, any delay added to one branch of the implementation model must be
matched to all other parallel branches as seen above. The Angle2SteeringVec subsystem, for

5 Radar Application Examples

5-4

example, has 36 delays; therefore, the top branch of the HDL Algorithm subsystem includes a delay
of 36 samples right before the MAC subsystem. Likewise, the MAC subsystem uses 19 delays, which
must be balanced by adding 19 delays to the output of the Angle2SteeringVec subsystem. This
figure shows the inside of the MAC subsystem to illustrate the 19 delays.

open_system([modelname '/HDL Algorithm/MAC']);
set_param(modelname,'SimulationCommand','update')

The bottom branch of the MAC subsystem has a block, followed by the complex multiply block
which contains a , then a block, followed by 4 delay blocks of for a total of 19 delays. The
delay values are defined in the PreLoadFcn callback in Model Properties.

Calculating the Steering Vector

The Angle2SteeringVec subsystem calculates the steering vector from the signal's angle of arrival.
It first calculates the signal's arrival delay at each sensor by matrix-multiplying the antenna element
position in the array by the incident direction of the signal. The delays are then passed to the SinCos
subsystem which calculates the sine and cosine trigonometric functions by using the simple and
efficient CORDIC algorithm.

open_system([modelname '/HDL Algorithm/Angle2SteeringVec']);

Because this design consists of a 10 element ULA spaced at half-wavelength, the antenna element
position is based on the spacing between each antenna element measured outwardly from the center
of the antenna array. Define the spacing between elements as a vector of 10 numbers ranging from
-6.7453 to 6.7453, i.e., with a spacing of 1/2 wavelength, which is 2.99/2. In fixed-point arithmetic,
the data type used for the element spacing vector is fixdt(1,8,4), i.e., a signed value with 8-bit
word length and 4-bit fraction length.

 FPGA-Based Beamforming in Simulink: Algorithm Design

5-5

Deserialization

To compare your sample-based fixed-point implementation with the floating-point frame-based
behavioral design you need to deserialize the output of the implementation subsystem and convert it
to a floating-point data type. Alternatively, you can compare the results directly with sample-based
signals but then you must unbuffer the output of the behavioral model to match the sample-based
signal output from the implementation algorithm, as shown in this figure.

In this case, you only need to convert the output of the HDL Algorithm subsystem to floating-point
by setting the output of the Data Type Conversion block to double.

Comparing Output of HDL Model to Behavioral Model

Run the model to display the results. You can run the Simulink model by clicking the Play button or
calling the sim command from the MATLAB® command line. Use the scopes to compare the outputs
visually.

sim(modelname);

5 Radar Application Examples

5-6

 FPGA-Based Beamforming in Simulink: Algorithm Design

5-7

The Time Scope of the Beamformed Signal and Beamformed Signal (HDL) shows that the two signals
are nearly identical. The error is on the order of 10^-3 in the Error scope. This result shows that the
HDL Algorithm subsystem is producing the same output as the behavioral model within
quantization error. This verification is an important first step before generating HDL code.

Because the HDL model used 55 delays, the scope titled HDL Beamformed Signal is delayed by 55ms
when compared to the original transmitted or beamformed signal shown on the Behavioral
Beamformed Signal scope.

Summary

This example is the first of a two-part tutorial series on how to design an FPGA-ready algorithm,
automatically generate HDL code, and verify the HDL code in Simulink. This example showed how to
use blocks from the Phased Array System Toolbox to create a behavioral model to serve as a golden
reference, and how to create a subsystem for hardware implementation using Simulink blocks that
support HDL code generation. It also compared the output of the implementation model to the output
of the corresponding behavioral model to verify that the two algorithms are functionally equivalent.

Once you verify that your implementation algorithm is functionally equivalent to your golden
reference, you can use HDL Coder™ for “HDL Code Generation from Simulink” (HDL Coder) and
HDL Verifier™ to “Generate a Cosimulation Model” (HDL Coder) test bench.

The second part of this two-part tutorial series “FPGA-Based Beamforming in Simulink: Code
Generation” on page 5-9 shows how to generate HDL code from the implementation model and
verify that the generated HDL code produces the same results as the floating-point behavioral model
as well as the fixed-point implementation model.

5 Radar Application Examples

5-8

FPGA-Based Beamforming in Simulink: Code Generation

This example shows the second half of a workflow to generate HDL code for a beamforming algorithm
and verify that the generated code is functionally correct.

The first part of the example, “FPGA-Based Beamforming in Simulink: Algorithm Design” on page 5-2,
shows how to develop an algorithm in Simulink® suitable for implementation on hardware, such as a
field programmable gate array (FPGA), and how to compare the output of the fixed-point
implementation model to that of the corresponding floating-point behavioral model.

This example uses HDL Coder™ to generate HDL code from the Simulink model developed in the first
part and verifies the HDL code using HDL Verifier™. HDL Verifier is used to generate a cosimulation
test bench model to verify the behavior of the generated HDL code. The test bench uses ModelSim®
for cosimulation to verify the automatically generated HDL code.

The Phased Array System Toolbox™ Simulink blocks model operations on frame-based, floating-point
data and provides the behavioral reference model. The example uses this behavioral model to verify
the results of the implementation of the algorithm for hardware and the generated HDL code.

HDL Coder generates portable synthesizable Verilog® and VHDL® code for over 300 Simulink blocks
that support HDL code generation. Those Simulink blocks operate on serial data using fixed-point
arithmetic with delays included to enable pipelining by the synthesis tool.

HDL Verifier helps you test and verify Verilog and VHDL designs for FPGAs, ASICs, and SoCs. This
example verifies HDL generated from a Simulink model against a test bench running in Simulink
using cosimulation with an HDL simulator.

Implementation Model

This tutorial assumes that you have a Simulink model that contains a subsystem with a beamforming
algorithm designed using Simulink blocks that use fixed-point arithmetic and support HDL code
generation. The “FPGA-Based Beamforming in Simulink: Algorithm Design” on page 5-2 example
shows how to create such a model.

Alternatively, if you start with a new model, you can run hdlsetup (HDL Coder) to configure the
Simulink model for HDL code generation. To configure the Simulink model for test bench creation,
open the Model Settings, select Test Bench under HDL Code Generation in the left panel, and
check HDL test bench and Cosimulation model in the Test Bench Generation Output properties
group.

Comparing Results of Implementation Model to Behavioral Model

Run the model created in the “FPGA-Based Beamforming in Simulink: Algorithm Design” on page 5-2
example to display the results. You can run the Simulink model by clicking the Play button or calling
the sim command from the MATLAB® command line. Use the Time Scope blocks to compare the
output frames visually.

modelname = 'SimulinkBeamformingHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.
set(allchild(0),'Visible','off');

sim(modelname);

 FPGA-Based Beamforming in Simulink: Code Generation

5-9

5 Radar Application Examples

5-10

 FPGA-Based Beamforming in Simulink: Code Generation

5-11

Model Settings

Once you verify that your fixed-point implementation model produces the same results as your
floating-point behavioral model, you can generate HDL code and test bench. First, set the HDL Code
Generation parameters in the Simulink Configuration Parameters dialog. For this example, set the
following parameters in Model Settings under HDL Code Generation:

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Uncheck all optimizations except Balance delays.
• Global Settings: Set the Reset type to Asynchronous.
• Test Bench: Select HDL test bench and Cosimulation model.

The reason the optimizations are disabled in this model is because some blocks used in our
implementation are already HDL-optimized blocks, which could conflict with the HDL Coder
optimizations.

HDL Code Generation and Test Bench Creation

Next, use HDL Coder to generate HDL code for the HDL Algorithm subsystem. For an example of
how to generate HDL code, see “Generate HDL Code from Simulink Model” (HDL Coder).

Use these commands to generate HDL code and test bench.

makehdl([modelname '/HDL Algorithm']); % Generate HDL code
makehdltb([modelname '/HDL Algorithm']); % Generate Cosimulation test bench

When you call the makehdl command, the MATLAB command window shows the amount of delay
added during the automatic code generation process. In this case, 24 delays are added which results
in an extra delay of 24*1ms = 24ms. The final output is expected to be delayed this additional
amount, for a total delay of 79ms.

Because of this extra delay added during code generation, the output of the floating-point behavioral
model needs to be delay balanced by adding 24 delays to the original 55. This delay aligns the output
of the behavioral model with the implementation model and the cosimulation output.

The process of generating the HDL code and test bench creates a new Simulink model in the working
folder, named gm_<modelname>_mq. The model contains a ModelSim Cosimulation block.

5 Radar Application Examples

5-12

Use these commands to open the test bench model.

modelname = ['gm_',modelname,'_mq'];
open_system(modelname);

In this new model, change the delay setting in the HDL Latency block to 79 to account for the 24
delays added by the code generation process. Using a delay of 79 ensures that the behavioral model
output is time-aligned with the output of the implementation and cosimulation output.

HDL Code Verification via Cosimulation

Before opening ModelSim make sure that the command to start ModelSim, vsim, is on the path of
your machine.

To run the cosimulation model, double-click the blue rectangular box in the upper-left corner of the
Simulink test model to launch ModelSim.

Run the Simulink test bench model to display the simulation results. You can run the Simulink model
by clicking the Play button or calling the sim command on the MATLAB command line. The test bench
model includes Time Scope blocks to compare the output of the cosimulation performed with
ModelSim with the output of the HDL subsystem in Simulink.

If you have ModelSim on your path, use this command to run the test bench.

sim(modelname);

After starting ModelSim, running the Simulink test bench model will populate Questa Sim with the
HDL model's waveforms and Time Scopes in Simulink. The figures show examples of the results in
Questa Sim and Simulink scopes.

 FPGA-Based Beamforming in Simulink: Code Generation

5-13

NOTE: You must restart Questa Sim each time you want to run the Simulink simulation. To restart,
call restart at the Questa Sim command line. Alternatively, you can quit Questa Sim and re-launch
it by double-clicking the blue box in the upper-left corner of the Simulink test bench model.

The Simulink scope shows both the cosimulation and HDL model (DUT) producing a 79ms delayed
version of the original signal produced by the behavioral model, as expected, with no difference
between the two waveforms. The 79ms delay is due to the original 55ms delay added in the HDL
Algorithm subsystem to enable pipelining by the synthesis tool and an additional 24ms delay due to
the delay balancing added by HDL code generation. The additional 24 delays are reported during the
code generation step.

5 Radar Application Examples

5-14

The Simulink scopes comparing the results of the cosimulation can be found in test bench model
inside the Compare subsystem, which is at the output of the HDL Algorithm_mq subsystem.

Use this command to open the subsystem with the scopes.

open_system([modelname,'/Compare/Assert_beamformingOutHDL'])

Summary

This example is the second of a two-part tutorial series on how to automatically generate HDL code
for a fixed-point, sample-based beamforming algorithm and verify the generated code in Simulink.
The first part of the tutorial, “FPGA-Based Beamforming in Simulink: Algorithm Design” on page 5-2,
shows how to develop an algorithm in Simulink suitable for implementation on an FPGA. This
example showed how to set up a model to generate the HDL code and a cosimulation test bench for a
Simulink subsystem created with blocks that support HDL code generation. It showed how to set up
and launch ModelSim to cosimulate the HDL code and compare its output to the output generated by
the HDL implementation model.

 FPGA-Based Beamforming in Simulink: Code Generation

5-15

FPGA-Based Monopulse Technique: Algorithm Design

This example shows the first half part of a workflow to develop a monopulse technique where the
signal is downconverted using digital downconversion (DDC). The model in this example is suitable
for implementation on FPGA. This example focuses on the design of monopulse technique to estimate
the azimuth and elevation of an object.

The second part of the example, “FPGA-Based Monopulse Technique: Code Generation” on page 5-
27, shows how to generate HDL code from the implementation model and verify that the generated
HDL code produces the correct results compared to the behavioral model. The entire algorithm is
designed using fixed-point data types.

The example shows how to design an FPGA-ready monopulse technique to match a corresponding
behavioral model in Simulink® using the Phased Array System Toolbox™, DSP HDL Toolbox™, and
Fixed-Point Designer™. To verify the implementation model, the example compares the simulation
output of the implementation model with the output of the behavioral model.

The Phased Array System Toolbox provides the floating-point behavioral model for the monopulse
technique as a phased.MonopulseFeed System object™. DSP HDL Toolbox provides the FIR filter
essential for the downconversion filtering.

Fixed-Point Designer provides data types and tools for developing fixed-point and single-precision
algorithms to optimize performance on embedded hardware. Bit-true simulations can be performed to
observe the impact of limited range and precision without implementing the design on hardware.

Monopulse is a technique where the received echoes from different elements of an antenna are used
to estimate the direction of arrival (DOA) of a signal. This direction helps estimate the location of an
object. The example uses DSP HDL Toolbox and Fixed-Point Designer to design the algorithm. This
technique uses four beams to measure the angular position of the target. All the four beams are
generated simultaneously and the difference of azimuth and elevation is achieved in a single pulse,
hence, the name monopulse.

Designing the Subsystem

The algorithm is implemented by using Simulink® blocks that support HDL code generation. The
model assumes that the signal is received from the 4-element uniform rectangular array (URA), so,
the model has 4 sinusoids as inputs. Assuming a 4-element URA, the model is comprised of 4 receive
channels from each of the elements of the URA. Once the signals are converted to the digital domain,
DDC blocks ensure that the frequency of the received signal is lowered to reduce the sample rate for
processing. The block diagram shows the subsystem which consists of the following modules.

1 Multi-Channel Input Signal
2 Digital Down-Conversion
3 Monopulse Sum and Difference Channels

modelname = 'SimulinkDDCMonopulseHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.
set(allchild(0),'Visible','off');

5 Radar Application Examples

5-16

The Simulink model has two branches. The top branch is the behavioral floating-point model of the
monopulse technique and digital downconversion algorithm and the bottom branch is the functionally
equivalent fixed-point version using blocks that support HDL code generation. Apart from plotting the
output of both branches to compare the two, the difference, or error, between sum channel of both
the outputs has also been calculated and plotted.

The output of the behavioral model has a delay () block. This delay is needed because the
implementation algorithm uses 220 delays to enable pipelining which creates latency that needs to be
accounted for. This latency is necessary to time-align the output between the behavioral model and
the implementation model.

Digital DownConversion (DDC)

The DDC and Monopulse HDL subsystem shows how the received signal sampled at 80 MHz and
nearly 15 MHz carrier frequency is downconverted to baseband via the DDC and then passed to the
monopulse sum and difference subsystem. A DDC module is a combination of a numerically controlled
oscillator (NCO) and a set of low-pass filters. The NCO block provides the signal to mix and
demodulate the incoming signal.

open_system([modelname '/DDC and Monopulse HDL']);

 FPGA-Based Monopulse Technique: Algorithm Design

5-17

The delay of 215 ms at the sum and difference output of the steering vectors in the implementation
subsystem compensates for the delay of the downconversion chain.

A DDC also contains a set of lowpass filters as shown in the figure. Once mixed, the lowpass filtering
of the mixed signal is required to eliminate the high frequency components. This example uses a
cascaded filter chain for lowpass filtering. The NCO generates the high-accuracy sinusoid for the
mixer. The NCO block has a latency of 6 cycles. This signal is mixed with the incoming signal and is
converted from a higher frequency to a relatively lower frequency as it progresses through the filter
stages.

open_system([modelname '/DDC and Monopulse HDL/HDL_DDC']);

In this example, the incoming signal has a carrier frequency of 15 MHz and is sampled at 80 MHz.
The downconversion process brings the sampled signal down to a few kHz. The coefficients for the
lowpass FIR filters are designed using filterBuilder. The coefficient values must be chosen to
satisfy the required passband criteria.

5 Radar Application Examples

5-18

Once generated, the coefficients are used to configure the FIR Filter block.

Monopulse Sum and Difference Channels

The monopulse algorithm must also generate a steering vector for different elements. The steering
vectors have been generated for an incident angle of azimuth 30 degrees and elevation 20 degrees.
The steering vectors are passed to the digital comparator to provide the desired sum and difference
channel outputs. The downconverted signal is then multiplied by the conjugate of these vectors as
shown in the figure. By processing the sum and difference channels, the DOA of the received signal
can be found. The digital comparator that compares the steering vectors for the different elements of
the antenna array is shown.

open_system([modelname '/DDC and Monopulse HDL/DIGITAL COMPARATOR']);

 FPGA-Based Monopulse Technique: Algorithm Design

5-19

In the figure, the digital comparator takes the steering vectors and computes the sum and difference
of the different steering vectors sVA, sVB, sVC and sVD respectively. You can also calculate the
steering vectors by using the phased.SteeringVector System object or you can generate them
using method similar to the one shown in the “FPGA-Based Beamforming in Simulink: Algorithm
Design” on page 5-2. Once the sum and difference of various steering vectors corresponding to each
element of the array has been done, the calculation of sum and difference channels for corresponding
azimuth and elevation angles are performed. From the Sum and Difference Monopulse subsystem, 3
signals are obtained, namely the sum, the azimuth difference, and the elevation difference. The entire
arithmetic is performed in fixed-point data types. Open the monopulse sum and difference channel
subsystem by using this command.

open_system([modelname '/DDC and Monopulse HDL/Monopulse Sum and Difference Channel']);

5 Radar Application Examples

5-20

Comparing Results of Implementation Model to Behavioral Model

To compare results of the implementation model to the behavioral model, run the model created to
display the results. You can run the Simulink model by clicking the Play button or calling the sim
command on the MATLAB® command line. Use Scope blocks to compare the output frames.

sim(modelname);

 FPGA-Based Monopulse Technique: Algorithm Design

5-21

5 Radar Application Examples

5-22

 FPGA-Based Monopulse Technique: Algorithm Design

5-23

5 Radar Application Examples

5-24

The plots show the output from sum and difference channels. These channels can be fed to an
estimator to indicate the angle/direction of the object.

Summary

This example demonstrates how to design an FPGA-ready algorithm, automatically generate HDL
code, and verify the HDL code in Simulink. The example illustrates the design of a Simulink model for
a DDC and monopulse feed system, and verifies the results with an equivalent behavioral model from
the Phased Array System Toolbox as the golden reference. Apart from the behavioral model, the
example demonstrates how to create a subsystem for implementation using Simulink blocks that
support HDL code generation. It also compared the output of the implementation model to the output
of the corresponding behavioral model to verify that the two algorithms are functionally equivalent.

Once the implementation algorithm is functionally verified to be equivalent to golden reference, HDL
Coder™ can be used for Simulink to HDL code generation and HDL Verifier™ can be used to
“Generate a Cosimulation Model” (HDL Coder) test bench.

 FPGA-Based Monopulse Technique: Algorithm Design

5-25

The second part of this two-part series shows how to generate HDL code from the implementation
model and verify that the generated HDL code produces the same results as the floating-point
behavioral model as well as the fixed-point implementation model.

5 Radar Application Examples

5-26

FPGA-Based Monopulse Technique: Code Generation

This example shows the second half of a workflow to generate HDL code for a monopulse technique
and verify that the generated code is functionally correct.

The first example in the workflow, “FPGA-Based Monopulse Technique: Algorithm Design” on page 5-
16, shows how to develop an algorithm in Simulink® suitable for implementation on hardware, such
as a field programmable gate array (FPGA), and how to compare the output of the fixed-point
implementation model to that of the corresponding floating-point behavioral model.

This example uses HDL Coder™ to generate HDL code from the Simulink model developed in part
one and verifies the HDL code using HDL Verifier™. HDL Verifier is used to generate a cosimulation
test bench model to verify the behavior of the automatically generated HDL code. The test bench uses
ModelSim® for cosimulation to verify the automatically generated HDL code.

The Phased Array System Toolbox™ Simulink blocks model operations on floating-point data and
provides the behavioral reference model. This behavioral model is used to verify the results of the
implementation model and the automatically generated HDL code.

HDL Coder™ generates portable, synthesizable Verilog® and VHDL® code for Simulink blocks that
support HDL code generation.

HDL Verifier lets you test and verify Verilog and VHDL designs for FPGAs, ASICs, and SoCs. This
example verifies HDL generated from the Simulink model against a test bench running in Simulink
using cosimulation with an HDL simulator.

Implementation Model

This example assumes that you have a Simulink model that contains a subsystem with a monopulse
technique designed using Simulink blocks that use fixed-point arithmetic and support HDL code
generation. “FPGA-Based Monopulse Technique: Algorithm Design” on page 5-16 shows how to
create such a model.

To start with a new model, run the hdlsetup (HDL Coder) function to configure the Simulink model
for HDL code generation. Open the Model Settings to configure the Simulink model for test bench
creation needed for verification. Select Test Bench under HDL Code Generation in the left panel,
and check HDL test bench and Cosimulation model in the Test Bench Generation Output
properties group.

Comparing Results of Implementation Model to Behavioral Model

Run the model created in the “FPGA-Based Monopulse Technique: Algorithm Design” on page 5-16
example to display the results. You can run the Simulink model by clicking the Play button or calling
the sim command on the MATLAB® command line. Use the Time Scope blocks to compare the output
frames visually.

modelname = 'SimulinkDDCMonopulseHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.
set(allchild(0),'Visible','off');

sim(modelname);

 FPGA-Based Monopulse Technique: Code Generation

5-27

5 Radar Application Examples

5-28

 FPGA-Based Monopulse Technique: Code Generation

5-29

5 Radar Application Examples

5-30

 FPGA-Based Monopulse Technique: Code Generation

5-31

Code Generation and Verification

This section shows how to generate HDL code for a DDC and monopulse technique and verify that the
generated code is functionally correct. The behavioral model provides the reference values to ensure
that the output from HDL is within tolerance limits.

After the fixed-point implementation is verified and the implementation model produces the same
results as your floating-point, behavioral model, you can generate HDL code and test bench. For code
generation and test bench, set these HDL Code Generation parameters in the Configuration
Parameters dialog.

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Uncheck all optimizations.
• Global Settings: Set the Reset type to Asynchronous.
• Test Bench: Select HDL test bench, Cosimulation model and SystemVerilog DPI test bench.

5 Radar Application Examples

5-32

HDL Code Generation and Test Bench Creation

After Simulink Model Settings are updated, you can use HDL Coder to generate HDL Code for the
HDL Algorithm subsystem and use HDL Verifier to generate test bench model.

Use these commands to generate HDL code and test bench.

makehdl([modelname '/DDC and Monopulse HDL']); % Generate HDL code
makehdltb([modelname '/DDC and Monopulse HDL ']); % Generate Cosimulation test bench

Since the model has accounted for pipelining in the multiplications, and disabled code gen
optimizations, there are no extra delays added to the model. To align the output of the behavioral
model with the implementation model and the cosimulation, you must compensate for the pipeline
delays. A delay of () is added to the output of the digital comparator. This delay is added to
compensate for the latency in the DDC chain. Also, out of the 220 units delay, 215 unit delays
compensates for the latency in the DDC chain and 5 units in the monopulse sum and difference
subsystem.

When you generate HDL code and test bench, a new Simulink model named gm_<modelname>_mq
that contains a ModelSim Cosimulation block is created in your working folder.

To open the test bench model, use this command.

modelname = ['gm_',modelname,'_mq'];
open_system(modelname);

 FPGA-Based Monopulse Technique: Code Generation

5-33

Launch ModelSim and run the cosimulation model to display the simulation results. You can click on
the Play button on the top of Simulink canvas to run the test bench or run it from the MATLAB®
command line.

Use this command to run the test bench.

sim(modelname);

The Simulink test bench model populates the Questa® Sim waveform with the HDL model's signal
and Time Scopes in Simulink. The figures show examples of the results in Questa Sim and Simulink
scopes.

The Simulink scope shows real and imaginary parts for both the cosimulation and design under test
(DUT) as well as the error between them.

The Simulink scopes comparing the results of the cosimulation can be found in test bench model
inside the Compare subsystem, which is at the output of the DDC and Monopulse HDL_mq
subsystem.

Use this command to open the subsystem with the scopes.

open_system([modelname,'/Compare/Assert_Sum Channel HDL'])

5 Radar Application Examples

5-34

Summary

The generated HDL code as well as a cosimulation test bench for the Simulink subsystem were
created with blocks that support HDL code generation. The example showed how to setup and launch
ModelSim to cosimulate the HDL code. The cosimulation is performed via ModelSim for the HDL
code and comparison of results to the output generated by the HDL model. The example helped in
automatically generating HDL code for a fixed-point monopulse technique and verify the generated
code in Simulink.

 FPGA-Based Monopulse Technique: Code Generation

5-35

FPGA-Based Range-Doppler Processing - Algorithm Design and
HDL Code Generation

This example shows how to design a range-Doppler response that is ready for FPGA (field
programmable gate array) implementation. The example matches the FPGA implementation to a
corresponding behavioral model in Simulink® using the Phased Array System Toolbox™.

To verify the functional correctness of the hardware implementation model, the example compares
the simulation output of that model with the results of the behavioral model. The term deployment
here implies designing a model that is suitable for implementation on an FPGA. The model is
deployment-ready and this condition is verified in the example. The hardware implementation is
designed using fixed-point data types.

The Phased Array System Toolbox provides the floating-point behavioral model for the range-Doppler
response through the phased.RangeDopplerResponse System object™. This behavioral model is
used to verify the correctness of the implementation model.

Fixed-Point Designer™ provides data types and tools for developing fixed-point and single precision
algorithms to optimize performance on an embedded hardware. Bit-true simulations can be
performed to observe the impact of limited range and precision without implementing the design in
hardware.

This example uses HDL Coder™ to generate HDL code from the developed Simulink model and
verifies the HDL code using HDL Verifier™ tools. HDL Verifier is used to generate a cosimulation test
bench model to verify the behavior of the automatically generated HDL code. The testbench uses
ModelSim® for cosimulation of the generated HDL code.

Range-Doppler Response Algorithm

The phased.RangeDopplerResponse System object generates the range-Doppler Response using
this algorithm.

1 Fast-time dimension: Filters the signal with a matched filter to generate the range response. The
matched filter is an FIR filter with the coefficients set to the time-reverse replica of the
transmitted signal.

2 Slow-time dimension: Computes the FFT to generate the Doppler response.

The input data is a matrix of M-by-N values, where M is the number of cells and N is the number of
pulses. To calculate the range response, use an FIR filter across the rows (fast-time) and compute the
FFT across the columns (slow-time).

Hardware Implementation Model

This example reuses the example input data and parameters from the
phased.RangeDopplerResponse (Phased Array System Toolbox) reference page example.

Serialize and deserialize the signal by using the Serializer1D and Deserializer1D blocks, respectively.
These blocks have input and output constraints for code generation, so set the FFT length to 64 and
use a subset of the input data cube.

The implementation model uses a word length of 32 bits and a fraction length of 31 bits.

Open the Simulink model by using this command.

5 Radar Application Examples

5-36

modelname = 'SimulinkRangeDopplerProcessingHDLWorkflowExample';
open_system(modelname);
% Ensure model is visible and not obstructed by scopes
set(allchild(0),'Visible','off');

The Simulink model consists of two branches from the Input block. The top branch is the behavioral
model with floating-point operations of the phased.RangeDopplerResponse System object. The
bottom branch is the functionally equivalent implementation model using fixed-point data types,
designed with blocks that support HDL code generation from the Simulink HDL Coder Library.

The input and coefficients are generated from the range-Doppler example data. The input is a M-by-N
matrix, where M is the number of range cells (fast-time dimension) and N is the number of pulses
(slow-time dimension). The output of the phased.RangeDopplerResponse object is a M-by-L
matrix, where M is the number of range cells and L is the FFT length. Since the input and output of
the implementation model have to be data streams, the input is serialized and quantized in the
Serialize and Quantize subsystem and the output is deserialized to form a range-Doppler
matrix map at the output in the Deserialize and Dequantize subsystem.

Preprocessing and Postprocessing Data

Open the Serialize and Quantize subsystem.

open_system([modelname '/Serialize and Quantize'])

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-37

The input data is zero-padded to accommodate the FIR filter latency by using the Matrix Concatenate
block. The data is then serialized by a Serializer1D block used in cascade with the reshape and data-
type convert (quantize to fixed-point) block.

open_system([modelname '/Deserialize and Dequantize'])

This subsystem uses a Deserializer1D block which uses the data-type convert and reshape blocks to
convert the output stream to a range-Doppler map.

Matched Filtering - Range Processing Subsystem

open_system([modelname '/RangeDopplerResponseHDL/Matched Filtering - Range Processing'])

The input stream is processed with a Discrete FIR Filter block with the matching coefficients in the
fast-time (row) dimension to get the range response. The block is suitable for hardware
implementations and has a latency of seven cycles. The registers in the FIR filter have to be reset to
an initial value of 0 after every row. This reset is performed by using a Boolean square wave
implemented using a Counter and a Compare To Constant block.

Buffer & Transpose-Column

Open the Buffer & Transpose-Column subsystem.

open_system([modelname '/RangeDopplerResponseHDL/Buffer & Transpose - Column'])

5 Radar Application Examples

5-38

The range-processed data is deserialized using cascaded Deserializer1D blocks and is converted to
matrix format with a reshape block. This data is now zero padded and transposed for computing the
FFT across the slow-time (column) dimension. The range-processed and transposed data is now
serialized again for FFT computation (Doppler processing).

FFT-Doppler Processing

Open the FFT-Doppler Processing subsystem.

open_system([modelname '/RangeDopplerResponseHDL/FFT - Doppler Processing'])

The FFT of the streamed (across column) data is calculated using an FFT block which has a latency of
173 cycles. A streaming radix 2^2 architecture is used with an FFT length of 64.

Buffer-FFT Shift

Open the Buffer-FFT Shift subsystem.

open_system([modelname '/RangeDopplerResponseHDL/Buffer - FFT Shift'])

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-39

The Doppler-processed serial data is deserialized using Deserialized1D blocks and transposed. The
FFT-processed data needs to be rearranged to have a zero-centric spectrum data, which is emulated
by using a combination of selector blocks and a matrix concatenate.

Serialize Output

Open the Serialize Output subsystem.

open_system([modelname '/RangeDopplerResponseHDL/Serialize Output'])

The range-Doppler map data after processing is in the form of a matrix, which is then serialized using
a Reshape and a Serializer1D block for the output stream.

Compare of Implementation Model and Behavioral Model Results

Simulate the model by clicking the Play button or by using the sim command.

sim(modelname);

To verify the functional correctness of the implementation model, subtract the response matrix of the
behavioral model from the response matrix of the implementation model and check that the
difference (error) is close to zero (or, within the quantization in the implementation model).

Export the response data from Simulink to the MATLAB® workspace, in the array format. Subtract
the behavioral response vector from the implementation model response, reshape the error matrix
into a 1-D array, and plot the error with the element index in the x-axis and error in the y-axis. Use
the imagesc function to display the range-Doppler map. Use the following script to plot the response
and error.

% Uncomment the following lines of code to visualize the response
% Behavioral Output
behavioralResponse = out.RangeDopplerResponseBehavioral(:,:,1); % Response from To Workspace Block
behavioralResponsedB = mag2db(abs(behavioralResponse)); % Convert to dB
rangeGrid = out.RangeGrid(:,1,1); % Range Grid
dopplerGrid = out.DopplerGrid(:,1,1); % Doppler Grid

5 Radar Application Examples

5-40

% Visualize the range-Doppler (Behavioral) map

f1 = figure(1); % Figure handle
f1.Name = 'Behavioral'; % Figure Name
fax1 = axes; % Axis Handle
imagesc(fax1,dopplerGrid,rangeGrid,behavioralResponsedB)

xlabel(fax1,'Doppler');
ylabel(fax1,'Range')
title(fax1,'Behavioral Response')

% HDL Output
idx = find(out.Valid); % Search for valid output
HdlResponse = out.RangeDopplerResponseHdl(:,:,idx(1)); % Response from To Workspace Block
HdlResponsedB = mag2db(abs(HdlResponse)); % Convert to dB

% Visualize the range-Doppler (HDL) map

f2 = figure(2); % Figure handle
f2.Name = 'HDL'; % Figure Name
fax2 = axes; % Axis handle
imagesc(fax2,dopplerGrid,rangeGrid,HdlResponsedB); % Use behavioral output of range and doppler grid

xlabel(fax2,'Doppler')
ylabel(fax2,'Range')
title(fax2,'HDL Response')

% Error
% Subtract the Behavioral Response from the HDL response
errorMatrix = abs(HdlResponse - behavioralResponse); % Matrix Subtract

% Convert the error matrix into a row vector which can be visualised on a 2D axis

errorStream = reshape(errorMatrix,1,[]); % Convert error matrix to 1D, row wise

% Find the index and the maximum error between HDL and behavioral results

Ymax = max(errorStream); % Find Maximum Error
Xmax = find(errorStream == Ymax); % Find index of maximum error

% Plot the error on a 2D plot and annotate the maximum error
% between HDL and behavioral response.
f3 = figure(3); % Figure handle
f3.Name = 'Error'; % Figure Name
fax3 = axes; % Axis handle
plot(fax3,errorStream) % Plot

ylabel(fax3,'Error');
xlabel(fax3,'Data Point Index')
title(fax3,'Error between Behavioral and HDL Model');

textstr = strcat(' ErrorMax = ',num2str(Ymax));
text(fax3,Xmax,Ymax,textstr);

The figures show the range-Doppler map and the error between the behavioral and implementation
models.

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-41

5 Radar Application Examples

5-42

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-43

Code Generation and Verification

This section covers the procedure to generate HDL code for the range-Doppler response
implementation model and verifying the functional correctness. The behavioral model provides the
reference values to ensure that the output from HDL model is within tolerance limits. Based on the
Simulink model setup described in the earlier sections, the implementation model is designed using
fixed-point arithmetic blocks that support HDL code generation. Alternatively, if you start with a new
model, you can run the hdlsetup function to configure the Simulink model for HDL code generation.
To configure the Simulink model for test bench creation, open Model Settings, select Test Bench
under HDL Code Generation in the left panel, and check HDL test bench and Cosimulation
model in the Test Bench Generation Output properties group.

Model Settings

After the fixed-point implementation is verified and the implementation model produces the same
results as your floating-point behavioral model, you can generate HDL code and test bench. For code
generation and test bench, set these HDL Code Generation parameters in the Configuration
Parameters dialog. Set the following parameters in Model Settings under HDL Code Generation:

5 Radar Application Examples

5-44

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Clear all optimizations.
• Global Settings: Set the Reset type to Asynchronous.
• Test Bench: Select HDL test bench, Cosimulation model, and System Verilog DPI test bench.

HDL Code Verification Using Cosimulation

After the Model is set up, use the HDL Workflow Advisor to generate the HDL code using the HDL
Coder tools, and generate a System Verilog DPI test bench to test the model using HDL Verifier. To
start the HDL Workflow Advisor, right-click on the RangeDopplerResponseHDL subsystem, navigate
to HDL Code, and click HDL Workflow Advisor. Alternatively, you can use these commands to
generate HDL code and System Verilog test bench.

% makehdl([modelname '/RangeDopplerResponseHDL']); % Generate HDL code
% makehdltb([modelname '/RangeDopplerResponseHDL']); % Generate Cosimulation test bench

After generating HDL code and the test bench, a new Simulink model named gm_<modelname>_mq
containing a ModelSim® Cosimulation block is created in your working directory. This figure shows
the generated model.

To open the test bench model use these commands.

% modelname = ['gm_',modelname,'_mq'];
% open_system(modelname);

Launch ModelSim and run the cosimulation model to display the simulation results. You can click the
Play button to run the test bench, or you can run it via command window using the following
command.

% sim(modelname);

The Simulink test bench model configures QuestaSim® with the signal from the HDL model and Time
Scope in Simulink.

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-45

The test bench scopes shows the output of the complex-valued response vector from the
implementation model and the cosimulation output as well as the error between the two outputs.

5 Radar Application Examples

5-46

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-47

Fixed-Point Word Length (Precision) and Resource Utilization Tradeoffs

This example uses a word length of 32 bits and a fraction length of 31 bits for design, simulation, and
implementation. There are tradeoffs associated with increasing the data precision with respect to
resource utilization.

This figure shows the precision with respect to the word length.

5 Radar Application Examples

5-48

The next figure shows the slice LUT utilization with respect to the word length.

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-49

The next figure shows the slice registers utilization with respect to the word length.

5 Radar Application Examples

5-50

The next figure shows the DSP block utilization with respect to the word length.

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-51

The next figure shows the block RAM tile utilization with respect to the word length.

5 Radar Application Examples

5-52

Summary

This example demonstrated a workflow for designing a Simulink model for a hardware-compatible
range-Doppler response block, and verifying the results with an equivalent behavioral setup from the
Phased Array System Toolbox. The example also shows how to generate HDL code for a fixed-point
implementation and verifying the generated code in Simulink for functional correctness. This example
showed how to set up and launch ModelSim to co-simulate the HDL code and compare its output to
the output generated by the HDL implementation model. The cosimulation used ModelSim for the
HDL code simulation and compared results to the output generated by the implementation model.

 FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

5-53

	Featured Examples
	Align Parallel Data Streams
	HDL Implementation of LMS Filter
	High Performance DC Blocker for FPGA
	HDL Implementation of Four Channel Synthesizer and Channelizer
	Gigasamples-per-Second Correlator and Peak Detector
	NFC Digital Downconverter
	Implement Digital Downconverter for FPGA
	Implement Digital Upconverter for FPGA

	HDL Optimized System Design
	FIR Filter Architectures for FPGAs and ASICs
	Complex Multipliers
	Frame-Based Input Data
	Fully Parallel Systolic Architecture
	Fully Parallel Transposed Architecture
	Partly Serial Systolic Architecture (1 < N < L)
	Fully Serial Systolic Architecture (N ≥ L)

	High-Throughput HDL Algorithms
	Blocks that Support Frame-Based Input

	Hardware Control Signals
	Streaming Interface with Valid Signal
	Backpressure Signal
	Reset Signal

	Block Reference Page Examples
	Generate Sine Wave
	Fully Parallel Systolic FIR Filter Implementation
	Partly Serial Systolic FIR Filter Implementation
	Optimize Programmable FIR Filter Resources
	FIR Decimation for FPGA
	Implement atan2 Function for HDL
	Downsample a Signal
	Control Data Rate Using Ready Signal
	Automatic Delay Matching for the Latency of FFT Block
	Implement CIC Interpolator Filter for HDL
	Implement CIC Decimator Filter for HDL
	Implement Downsampler For HDL
	Implement Upsampler for HDL

	HDL Code Generation and Deployment
	Prototype DSP HDL Algorithms on Hardware
	How to Install Support Packages

	Radar Application Examples
	FPGA-Based Beamforming in Simulink: Algorithm Design
	FPGA-Based Beamforming in Simulink: Code Generation
	FPGA-Based Monopulse Technique: Algorithm Design
	FPGA-Based Monopulse Technique: Code Generation
	FPGA-Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

